832
K. Kon et al.
Letter
Synlett
iminium cation. In this reaction, the absolute configuration
of the aldol adduct 4 is determined at the C–C bond-forma-
tion step.
(3) For reactions using -keto amides as substrates, see: (a) Di
Sanza, R.; Nguyen, T. L. N.; Iqbal, N.; Argent, S. P.; Lewis, W.;
Lam, H. W. Chem. Sci. 2020, 11, 2401. (b) Xia, A.-B.; Pan, G.-J.;
Wu, C.; Liu, X.-L.; Zhang, X.-L.; Li, Z.-B.; Du, X.-H.; Xu, D.-Q. Adv.
Synth. Catal. 2016, 358, 3155. (c) Ishida, N.; Nečas, D.; Masuda,
Y.; Murakami, M. Angew. Chem. Int. Ed. 2015, 127, 7526.
(d) Hatano, M.; Nishimura, T. Angew. Chem. Int. Ed. 2015, 54,
10949. (e) Wang, L.; Ni, Q.; Blümel, M.; Shu, T.; Raabe, G.;
Enders, D. Chem. Eur. J. 2015, 21, 8033. (f) Joie, C.; Deckers, K.;
Raabe, G.; Ender, D. Synthesis 2014, 46, 1539. (g) Joie, C.;
Deckers, K.; Enders, D. Synthesis 2014, 49, 799.
(h) Goudedranche, S.; Pierrot, D.; Constantieux, T.; Bonne, D.;
Rodriguez, J. Chem. Commun. 2014, 50, 15605. (i) Shirai, T.; Ito,
H.; Yamamoto, Y. Angew. Chem. Int. Ed. 2014, 53, 2658.
(j) Raimondi, W.; del Mar Sanchez Duque, M.; Goudedranche,
S.; Quintard, A.; Constantieux, T.; Bugaut, X.; Bonne, D.;
Rodriguez, J. Synthesis 2013, 1659. (k) Yin, L.; Kanai, M.;
Shibasaki, M. Angew. Chem. Int. Ed. 2011, 50, 7620.
In conclusion, we have developed an organocatalyzed
asymmetric aldol reaction of -keto amides with acetone in
the presence of a tripeptide catalyst. The desired ,-disub-
stituted -hydroxy amides were obtained in up to 99% yield
and 91% ee. Further studies pertaining to the expansion of
the substrate scope, the determination of the absolute con-
figuration of the aldol adduct, and the investigation of the
origin of enantioselectivity are currently underway in our
group.
Funding Information
This work was supported by the Sasakawa Scientific Research Grant
(4) For reactions using ,-unsaturated -keto amides as substrates,
see: (a) Guo, Y.-J.; Guo, X.; Kong, D.-Z.; Lu, H.-J.; Liu, L.-T.; Hua,
Y.-Z.; Wang, M.-C. J. Org. Chem. 2020, 85, 4195. (b) Yang, X.-C.;
Liu, M.-M.; Mathey, F.; Yang, H.; Hua, Y.-Z.; Wang, M.-C. J. Org.
Chem. 2019, 84, 7762. (c) Liu, M.-M.; Yang, X.-C.; Hua, Y.-Z.;
Chang, J.-B.; Wang, M.-C. Org. Lett. 2019, 21, 2111. (d) Yao, Q.;
Yu, H.; Zhang, H.; Dong, S.; Chang, F.; Lin, L.; Liu, X.; Feng, X.
Chem. Commun. 2018, 54, 3375. (e) Lefranc, A.; Guénée, L.;
Contal, S. G.; Alexakis, A. Synlett 2014, 25, 2947. (f) Evans, D. A.;
Olhava, E. J.; Johnson, J. S.; Janey, J. M. Angew. Chem. Int. Ed.
1998, 37, 3372.
(2020-3029) from The Japan Science Society.
J
a
pa
n
S
c
i
e
n
c
e
S
oc
i
ety(
2
0
2
0-3
0
2
9
)
Acknowledgment
guage editing.
Supporting Information
Supporting information for this article is available online at
(5) (a) Luo, W.; Zhao, J.; Ji, J.; Lin, L.; Liu, X.; Mei, H.; Feng, X. Chem.
Commun. 2015, 51, 10042. (b) Xu, H.; Wolf, C. Angew. Chem. Int.
Ed. 2011, 50, 12249.
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
nS
u
p
p
orti
n
gInform
a
ti
o
n
(6) (a) Kon, K.; Kohari, Y.; Murata, M. Tetrahedron Lett. 2019, 60,
415. (b) Kon, K.; Kohari, Y.; Murata, M. Heterocycles 2019, 99,
841. (c) Kon, K.; Takai, H.; Kohari, Y.; Murata, M. Catalysts 2019,
9, 514.
(7) List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122,
2395.
References and Notes
(1) (a) Schneider, C. H.; Kasper, M. F.; De Weck, A. L.; Rolli, H.;
Angst, B. D. Allergy 1987, 42, 597. (b) Matumoto, N.; Momose, I.;
Umekita, M.; Kinoshita, N.; Chino, M.; Iinuma, H.; Sawa, T.;
Hamada, M.; Takeuchi, T. J. Antibiot. 1998, 51, 1087. (c) Lu, S.-H.;
Yamagata, T.; Atuki, K.; Sun, L.; Smith, C. P.; Yoshimura, N.;
Chancellor, M. B.; De Groat, W. C. Brain Res. 2002, 946, 72.
(d) Schäcke, H.; Schottelius, A.; Döcke, W.-D.; Strehlke, P.;
Jaroch, S.; Schmees, N.; Rewinkel, H.; Hennekes, H.; Asadullah,
K. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 227. (e) Oku, N.;
Krishnamoorthy, R.; Benson, A. G.; Ferguson, R. L.; Lipton, M. A.;
Phillips, L. R.; Gustafson, K. R.; McMahon, J. B. J. Org. Chem. 2005,
70, 6842. (f) Cantarini, M.; Fuhr, R.; Morris, T. Pharmacol. 2006,
77, 171. (g) Xie, W.; Ding, D.; Zi, W.; Li, G.; Ma, D. Angew. Chem.
Int. Ed. 2008, 47, 2844. (h) Lu, Z.; Van Wagoner, R. M.; Harper, M.
K.; Baker, H. L.; Hooper, J. N. A.; Bewley, C. A.; Ireland, C. M.
J. Nat. Prod. 2011, 74, 185.
(8) Aldol Products 4a–h; General Procedure
A mixture of 1d (20 mol, 10.7 mg), MeOH (0.1 mL), and
acetone (3; 2 mmol, 0.15 mL) was stirred at –40 °C for 10 min.
The appropriate -keto amide 2 (0.1 mmol) was added, and the
mixture was stirred at –40 °C for 5 d then concentrated under
reduced pressure. The aldol product was purified by column
chromatography (silica gel, hexane–EtOAc). The enantiomeric
excess of the aldol adduct was determined by chiral HPLC.
2-Hydroxy-N-methyl-4-oxo-2-phenylpentanamide (4a)
White solid, 20.8 mg (94%, 91% ee); mp 71–73 °C; []D23 +169.4
(c = 0.13, CHCl3). HPLC [Daicel CHIRALPAK AD-H, hexane–i-
PrOH (90:10), 1.0 mL/min, 254 nm, 35 °C]: tR (minor) = 10.9
min; tR (major) = 12.3 min. 1H NMR (600 MHz, CDCl3): = 7.59–
7.57 (m, 2 H), 7.37–7.32 (m, 2 H), 7.28 (tt, J = 7.3, 1.5 Hz, 1 H),
6.78 (br s, 1 H), 5.34 (s, 1 H), 3.67 (d, J = 17.6 Hz, 1 H), 2.79 (d, J =
17.6 Hz, 1 H), 2.76 (d, J = 5.0 Hz, 3 H), 2.24 (s, 3 H). 13C NMR (150
MHz, CDCl3): = 212.2, 174.1, 141.3, 128.4, 127.8, 124.4, 78.2,
50.8, 31.3, 26.1. HRMS (EI): m/z [M+] calcd for C12H15NO3:
221.1052; found: 221.1029.
(2) For selected reviews, see: (a) Brandão, P.; Burke, A. J. Tetrahe-
dron 2018, 74, 4927. (b) Yu, B.; Xing, H.; Yu, D.-Q.; Liu, H.-M.
Beilstein J. Org. Chem. 2016, 12, 1000. (c) Kumar, A.; Chimni, S. S.
RSC Adv. 2012, 2, 9748.
© 2021. Thieme. All rights reserved. Synlett 2021, 32, 829–832