Journal of the American Chemical Society
Page 6 of 7
Tanaka, M.; Kurosaki, Y.; Washio, T.; Anada, M.; Hashimoto, S.
(22) (a) Badiei, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren,
Tetrahedron Lett. 2007, 48, 8799. (c) Matsuda, N.; Hirano, K.; Satoh,
T.; Miura, M. Angew. Chem. Int. Ed. 2012, 51, 11827. (d) Miura, T.;
Morimoto, M.; Murakami, M. Org. Lett. 2012, 14, 5214. (e) Sandoval,
D.; Samoshin, A. V; Read de Alaniz, J. Org. Lett. 2015, 17, 4514. α-
Aryl esters: (f) Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997,
119, 6452. (g) Zhao, B.; Du, H.; Shi, Y. J. Am. Chem. Soc. 2008, 130,
7220. (h) Evans, R. W.; Zbieg, J. R.; Zhu, S.; Li, W.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2013, 135, 16074. α-bromo esters: (i) Fisher,
D. J.; Burnett, G. L.; Velasco, R.; Read de Alaniz, J. J. Am. Chem.
Soc. 2015, 137, 11614.
T. H. J. Am. Chem. Soc. 2006, 128, 15056. (b) Badiei, Y. M.; Dinescu,
A.; Dai, X.; Palomino, R. M.; Heinemann, F. W.; Cundari, T. R.;
Warren, T. H. Angew. Chem. Int. Ed. 2008, 47, 9961. (c) Wiese, S.;
Badiei, Y. M.; Gephart, R. T.; Mossin, S.; Varonka, M. S.; Melzer, M.
M.; Meyer, K.; Cundari, T. R.; Warren, T. H. Angew. Chem. Int. Ed.
2010, 49, 8850.
(23) We also observed α-aminated product of THF when reaction
was performed in THF. Copper-nitrenoid species were proposed in α-
amination of cyclic ether, see: He, L.; Yu, J.; Zhang, J.; Yu, X.-Q.
Org. Lett. 2007, 9, 2277.
1
2
3
4
5
6
7
8
9
(8) Late-stage catalytic nucleophilic addition of carboxylic acid to
imine: Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M.
J. Am. Chem. Soc. 2015, 137, 7075.
(24) Without molecular sieves, low chemical yield was observed
with significant amount of generation of TsNH2 by hydrolysis of the
copper nitrenoid.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) (a) Kashima, C.; Fukuchi, I.; Hosomi, A. J. Org. Chem. 1999,
59, 7821. (b) Kashima, C. Heterocycles. 2003, 60, 437. α-Aryl
acylpyrazoles in organocatalysis, see: (c) Tan, B.; Hernández-Torres,
G.; Barbas III, C. F. Angew. Chem. Int. Ed. 2012, 51, 5381. (d) Li, T.-
Z.; Wang, X.-B.; Sha, F.; Wu, X.-Y. J. Org. Chem 2014, 79, 4332.
(10) See Supporting Information.
(11) Driessen, W. L.; Everstijn, P. L. A. Inorg. Chim. Acta. 1980,
41, 179.
(12) In reference 7a, the authors concluded that α-amination of ke-
tene silyl acetals using iminoiodinane was not practical for α-amino
ester synthesis. For the preparation of iminoiodinane, see; Yamada,
Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975, 361.
(25) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc.
2008, 130, 11546
(26) Amaya, T.; Maegawa, Y.; Masuda, T.; Osafune, Y.; Hirao, T.
J. Am. Chem. Soc. 2015, 137, 10072.
(27) When TEMPO was added to reaction mixture, α-oxyaminated
product was observed by LC-MS analysis in the crude reaction mix-
ture. We speculated that α-oxyamination proceeded through enolate
addition to 2e electrophilic Cu-TEMPO complex, see: (a) Michel, C.;
Belanzoni, P.; Gamez, P.; Reedjik, J.; Baerends, E. J. Inorg. Chem.
2009, 48, 11909. (b) van Humbeck, J. F.; Simonovich, S. P.; Knowles,
R. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 10012.
(28) (a) Díaz-Requejo, M. M.; Pérez, P. J.; Brookhart, M.; Temple-
ton, J. L. Organometallics 1997, 16, 4399. (b) Brandt, P.; Södergren,
M. J.; Andersson, P. G.; Norrby, P.-O. J. Am. Chem. Soc. 2000, 122,
8013. (c) Gómez-Emeterio, B. P.; Urbano, J.; Díaz-Requejo, M. M.;
Pérez, P. J. Organometallics 2008, 27, 4126. (d) Maestre, L.; Sameera,
W. M. C.; Díaz-Requejo, M. M.; Maseras, F.; Pérez, P. J. J. Am.
Chem. Soc. 2013, 135, 1338. (e) Bagchi, V.; Paraskevopoulou, P.;
Das, P.; Chi, L.; Wang, Q.; Choudhury, A.; Mathieson, J. S.; Cronin,
L.; Pardue, D. B.; Cundari, T. R.; Mitrikas, G.; Sanakis, Y.; Stav-
ropoulos, P. J. Am. Chem. Soc. 2014, 136, 11362. Also see the possi-
ble involvement of radical species in amination reaction; (f) Ton,
T. M. U.; Tejo, C.; Tiong, D. L. Y.; Chan, P. W. H. J. Am. Chem. Soc.
2012, 134, 7344. and Ref 14h
(13) Other aminating agents, such as hydroxylamine derivatives
and nitroso compounds proved to be insufficient. We also evaluated
other iminoiodinane derivatives (PhI=NR; R = Ns, Ses). However the
inferior results were obtained.
(14) Catalytic α-amination of pre-activated ketones or active meth-
ylene compounds using iminoiodinanes, see: (a) Adam, W.; Rosch-
mann, K. J.; Saha-Möller, C. R. Eur. J. Org. Chem. 2000, 557. (b)
Liang, J.-L.; Yu, X.-Q.; Che, C.-M. Chem. Commun. 2002, 124. (c)
Anada, M.; Tanaka, M.; Washio, T.; Yamawaki, M.; Abe, T.; Hash-
imoto, S. Org. Lett. 2007, 9, 4559. (d) Tanaka, M.; Nakamura, S.;
Anada, M.; Hashimoto, S. Heterocycles. 2008, 76, 1633. (e) Nakani-
shi, M.; Salit, A.-F.; Bolm, C. Adv. Synth. Catal. 2008, 350, 1835. (f)
Chang, J. W. W.; Ton, T. M. U.; Chan, P. W. H. Chem. Rec. 2011, 11,
331. (g) Yu, J.; Liu, S.-S.; Cui, J.; Hou, X.-S.; Zhang, C. Org. Lett.
2011, 14, 832. (h) Ton, T. M. U.; Himawan, F.; Chang, J. W. W.;
Chan, P. W. H. Chem. Eur. J. 2012, 18, 12020. (i) Tejo, C.; Yeo, H.
Q.; Chan, P. W. H. Synlett. 2014, 25, 201.
(15) Recent reviews on copper-catalyzed aminations, see; (a)
Gephart, R. T.; Warren, T. H. Organometallics 2012, 31, 7728. (b)
Yan, X.; Yang, X.; Xi, C. Catal. Sci. Technol. 2014, 4, 4169.
(16) A certain amount of acylpyrazole was decomposed during the
course of reaction. When 1.5 equivalent of 1a was used, amination
product 3a was observed in 59% yield.
(29) The possibility of inhibition of enolization by radical scaven-
gers and concerted mechanism cannot be ruled out.
(30) A reviewer suggested directed C-H amination serving acylpy-
razole as directing group as a possible alternative mechanism.
(31) When chiral substrate 3a was subjected to the reaction condi-
tions, no racemization was observed.
(17) Smirnov, V. O.; Khomutova, Y. A.; Tartakovsky, V. A.; Ioffe,
S. L. Eur. J. Org. Chem. 2012, 3377.
(18) Nitroalkane is known to be much more acidic than ketone and
preferential nitronate formation was observed over ketone even under
mildy basic conditions, see: (a) Matthews, W. S.; Bares, J. E.; Bart-
mess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Margo-
lin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. J. Am. Chem.
Soc. 1975, 97, 7006. (b) Do, H.-Q.; Tran-vu, H.; Daugulis, O. Organ-
ometallics 2012, 31, 7816.
(19) Chemoselective deprotonative activation of thioamides over
ketones: Iwata, M.; Yazaki, R.; Chen, I.-H.; Sureshkumar, D.;
Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133, 5554. Also
see Ref. 8
(20) Treatment of levurinic acid derivatives with bromine afforded
mixture of β/δ-brominated products and no α-brominated product was
obtained. (a) MacDonald, S. F. Can. J. Chem. 1974, 52, 3257. (b)
Sorg, A.; Siegel, K.; Brückner, R. Chem. Eur. J 2005, 11, 1610. (c)
Zavozin, A. G.; Ignat’ev, N. V.; Schulte, M.; Zlotin, S. G. Tetrahe-
dron 2013, 69, 6975.
(21) Kashima, C.; Tsuruoka, S.; Mizuhara, S. Heterocycles. 2000
52, 413.
ACS Paragon Plus Environment