E. Ö. Karaca et al.
[11] S. Diez-Gonzalez, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
[12] J. Louie, C. W. Bielawski, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123,
11312.
[13] İ. Özdemir, S. Yaşar, B. Çetinkaya, Transition Met. Chem. 2005, 30, 831.
[14] F. L. Zeng, Z. K. Yu, Organometallics 2008, 27, 6025.
[15] D. Gnanamgari, E. L. O. Sauer, N. D. Schley, C. Butler, C. D. Incarvito,
R. H. Crabtree, Organometallics 2009, 28, 321.
[16] J. Witt, A. Pöthig, F. E. Kühn, W. Baratta, Organometallics 2013, 32, 4042.
[17] S. Yaşar, S. Çekirdek, İ. Özdemir, J. Coord. Chem. 2014, 67, 1236.
[18] E. Mas-Marza, J. A. Mata, E. Peris, Angew. Chem. Int. Ed. 2007, 46, 3729.
[19] H. Türkmen, T. Pape, F. E. Hahn, B. Çetinkaya, Eur. J. Inorg. Chem. 2008,
36, 5418.
[20] S. Yaşar, K. J. Cavell, B. D. Ward, B. Kariuki, Appl. Organometal. Chem.
2011, 25, 374.
[21] N. B. Jokić, M. Zhang-Presse, S. L. M. Goh, C. S. Straubinger, B. Bechlars,
W. A. Herrmann, F. E. Kühn, J. Organometal. Chem. 2011, 696, 3900.
[22] V. Gierz, A. Urbanaite, A. Seyboldt, D. Kunz, Organometallics 2012, 31,
7532.
(Table 4, entries 25–30). The in situ catalytic system also catalyzes
the transfer hydrogenation of benzophenone very effectively
(Table 4, entries 6, 12, 18, 24, 30, 36).
Under the reaction conditions, salts 1f and 1b prove to be the
most effective catalysts relative to the other salts. The reduction
of acetophenone with tetrahydropyrimidinium salts is completed
within 1 h in high yields. It is evident that the NHC precursors that
contain electron-donating methoxy substituent (1f) and methyl
substituent (1b) are the most effective of the salts examined.
Catalytic transfer hydrogenation by the use of inorganic salts
is well established. It is noted that these reactions rely on long
reaction times.[44,45] Beller and co-workers reported the applica-
tion of in situ generated ruthenium carbene complexes in the
reduction of various ketones. Acetophenone derivatives were
reduced at 100°C for 12 h.[46] Bala and co-workers reported the
use of ferrocenylimidazolium salts as catalysts for the transfer
hydrogenation of ketones in propanol at 82°C for 24 h.[47] Com-
pared with these results, the in situ prepared three-component
1,3-dialkyltetrahydropyrimidinium salts/[RuCl2(p-cymene)]2 and
KOH are active in the reduction of ketones under mild
conditions with almost quantitative conversions and short reac-
tion times.
[23] A. Azua, J. A. Mata, E. Peris, F. Lamaty, J. Martinez, E. Colacino,
Organometallics 2012, 31, 3911.
[24] M. Blanco, P. Álvarez, C. Blanco, M. V. Jiménez, J. Fernández-Tornos,
J. J. Pérez-Torrente, L. A. Oro, R. Menéndez, ACS Catal. 2013, 3, 1307.
[25] S. Gülcemal, A. G. Gökçe, B. Çetinkaya, Inorg. Chem. 2013, 52, 10601.
[26] U. Hintermair, J. Campos, T. P. Brewster, L. M. Pratt, N. D. Schley,
R. H. Crabtree, ACS Catal. 2014, 4, 99.
[27] R. Castarlenas, M. A. Esteruelas, E. Onate, Organometallics 2008, 27,
3240.
[28] S. Kuhl, R. Schneider, Y. Fort, Organometallics 2003, 22, 4184.
[29] D. S. Tromp, P. Hauwert, C. J. Elsevier, Appl. Organometal. Chem. 2012,
26, 335.
[30] W. A. Herrmann, K. Öfele, D. Preysing, E. Herdtweck, J. Organometal.
Chem. 2003, 684, 235.
Conclusions
We have synthesized new 3,4,5,6-tetrahydropyrimidinium salts as
precursors of N-heterocyclic carbenes. All the compounds were
characterized using 1H NMR, 13C NMR and IR spectroscopies and el-
emental analysis. One ligand was structurally characterized using
single-crystal X-ray diffraction. They were associated with [RuCl2
(p-cymene)]2 to generate catalytic species. This concept for making
catalysts in situ opens the way for the discovery of many new
catalysts via the interaction of metal complexes and suitable
ligands. The catalytic effects of this in situ prepared catalyst system
have been investigated in the reduction of acetophenone and its
derivatives using 2-propanol and KOH under mild reaction condi-
tions. Also, the procedure is simple and efficient towards various
aryl ketones. Detailed investigations focusing on new metal–NHC
complexes and other applications are ongoing.
[31] N. Gürbüz, S. Yaşar, E. Ö. Özcan, İ. Özdemir, B. Çetinkaya, Eur. J. Inorg.
Chem. 2010, 3051.
[32] N. Gürbüz, E. Ö. Özcan, İ. Özdemir, B. Çetinkaya, O. Şahin,
O. Büyükgüngör, Dalton Trans. 2012, 41, 2330.
[33] E. Ö. Özcan, D. Mercan, N. Gürbüz, E. Çetinkaya, B. Çetinkaya, İ. Özdemir,
Turk. J. Chem. 2011, 35, 699.
[34] CrystalClear, Molecular Structure Corporation, The Woodlands, TX/
Rigaku Corporation, Tokyo, 2006.
[35] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
[36] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor,
J. Chem. Soc. Perkin Trans. 2 1987, S1.
[37] S. Saba, A.-M. Brescia, M. K. Kaloustin, Tetrahedron Lett. 1991, 32, 5031.
[38] İ. Özdemir, S. Demir, B. Çetinkaya, Tetrahedron 2005, 61, 9791.
[39] S. Yaşar, E. Ö. Özcan, N. Gürbüz, B. Çetinkaya, İ. Özdemir, Molecules
2010, 15, 649.
[40] M. Nardelli, Acta Crystallogr. 1983, C39, 1141.
[41] D. Cremer, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 1354.
[42] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Angew. Chem. Int. Ed.
Engl. 1995, 34, 1555.
Acknowledgements
[43] J.-P. Genet, Acc. Chem. Res. 2003, 36, 908.
This work was financially supported by the Technological and
Scientific Research Council of Turkey TUBİTAK (TBAG (107 T098))
and İnönü University Research Fund (İÜBAP: 2013/51).
[44] A. Ouali, J.-P. Majoral, A.-M. Caminade, M. Taillefer, ChemCatChem 2009,
1, 504.
[45] V. Polshettiwar, R. S. Varma, Green Chem. 2009, 11, 1313.
[46] S. Enthaler, R. Jackstell, B. Hagemann, K. Junge, G. Erre, M. Beller,
J. Organometal. Chem. 2006, 691, 4652.
[47] M. I. Ikhile, M. D. Bala, V. O. Nyamori, J. C. Ngila, Appl. Organometal.
Chem. 2013, 27, 98.
References
[1] R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97.
[2] H. U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv.
Synth. Catal. 2003, 345, 103.
[3] S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226.
[4] J. S. M. Samec, J.-E. Bäckvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev.
2006, 35, 237.
[5] J. R. Miecznikowski, R. H. Crabtree, Polyhedron 2004, 23, 2857.
[6] A. G. Campaña, R. E. Estévez, N. Fuentes, R. Robles, J. M. Cuerva,
E. Buñuel, D. Cárdenas, J. E. Oltra, Org. Lett. 2007, 9, 2195.
[7] T. Koike, T. Ikariya, Adv. Synth. Catal. 2004, 346, 37.
[8] P. Hauwert, R. Boerleider, S. Warsink, J. J. Weigand, C. Elsevier, J. Am.
Chem. Soc. 2010, 132, 16900.
[9] a) R. Malacea, R. Poli, E. Manoury, Coord. Chem. Rev. 2010, 254, 729; b)
T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300.
[10] J. A. Mata, M. Poyatos, E. Peris, Coord. Chem. Rev. 2007, 251, 841.
Supporting Information
Additional supporting information may be found in the online ver-
sion of this article at the publisher’s web-site.
Crystallographic data for the structure reported in this paper has
been deposited with the Cambridge Crystallographic Data Center:
CCDC-1019867 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
uk/data request/cif.
wileyonlinelibrary.com/journal/aoc
Copyright © 2015 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2015, 29, 475–480