Angewandte
Chemie
Table 1: Swern oxidation of alcohols by using the microscale flow system and macroscale batch
Another important point is that
system.[a]
microsystems serve as a quick
means for scale-up, because the
quality of the product does not
change during the course of
scale-up, although batch methods
suffer from such a problem.
In conclusion, the present
observations demonstrate a strik-
ing example of the effectiveness
of the microscale flow system for
a reaction involving highly unsta-
Alcohol III
System
Residence time T [8C] Conversion Yield
Yield
Yield
in R1 [s]
[%]
of V [%] of VI [%] of VII [%]
1-decanol
microscale flow
2.4
0.01
0.01
À20 95
75
70
71
11
95
86
89
20
88
89
88
19
83
91
78
75
49
8
6
6
1
5
4
3
2
6
7
5
2
10
19
22
22
90
2
3
2
75
5
1
0
94
20 96
À20 73
À20 92
macroscale batch
microscale flow
2-octanol
2.4
0.01
0.01
0
91
20 88
À20 51
À20 88
macroscale batch
cyclohexanol microscale flow
2.4
0.01
0.01
ble
intermediates.
Further
0
90
20 81
À20 86
À70 88
À20 97
2
70
5
improvement of the reaction
system and applications to the
synthesis of various carbonyl
compounds are in progress.
macroscale batch
benzyl alcohol microscale flow
2.4
0.01
0.01
n.d.[b]
n.d.[b]
n.d.[b]
n.d.[b]
8
0
100
14
16
50
20 100
À20 80
Received: October 29, 2004
Published online: March 10, 2005
macroscale batch
[a] Yields were determined by GC withan internal standard and are based upon the amount of the alcohol
consumed. [b] n.d.=not determined.
Keywords: alcohols ·
microreactors · oxidation ·
Swern oxidation ·
.
synthetic methods
The success of the Swern oxidation by using the micro-
scale flow system at À208C prompted us to examine further
increases in the reaction temperature. The reaction at 08C
[1] a) Microreaction Technology (Ed.: W. Ehrfeld), Springer, Berlin,
1998; b) W. Ehrfeld, V. Hessel, H. Lꢀwe, Microreactors, Wiley-
VCH, Weinheim, 2000; c) Microsystem Technology in Chemistry
and Life Sciences (Eds.: A. Manz, H. Becker), Springer, Berlin,
1999; d) V. Hessel, S. Hardt, H. Lꢀwe, Chemical Micro Process
Engineering, Wiley-VCH, Weinheim, 2004.
resulted in a significant decrease in the yield of carbonyl
compounds V (32% for cyclohexanol; results not shown).
Presumably Pummerer rearrangement of intermediate I took
place to give II at this temperature. However, we found that
by shortening the residence time (R1: 0.01 s) the desired
carbonyl compounds V were obtained in good yields even at
08C. More outstanding is the fact that the reaction can be
conducted even at room temperature (208C) to obtain V in
good yields. This success of the Swern oxidation at room
temperature seems to be attributable to the extremely short
residence time, which ensures very fast transfer of the highly
unstable intermediate I to the next reactor before decom-
position.
[2] a) H. Salimi-Moosavi, T. Tang, D. J. Harrison, J. Am. Chem. Soc.
1997, 119, 8716 – 8717; b) C. de Bellefon, N. Tanchoux, S.
Caravieilhes, P. Grenouillet, V. Hessel, Angew. Chem. 2000,
112, 3584 – 3587; Angew. Chem. Int. Ed. 2000, 39, 3442 – 3445;
c) H. Hisamoto, T. Saito, M. Tokeshi, A. Hibara, T. Kitamori,
Chem. Commun. 2001, 2662 – 2663; d) C. Wiles, P. Watts, S. J.
Haswell, E. Pombo-Villar, Chem. Commun. 2002, 1034 – 1035;
e) T. Fukuyama, M. Shinmen, S. Nishitani, M. Sato, I. Ryu, Org.
Lett. 2002, 4, 1691 – 1694; f) E. Garcia-Egido, V. Spikmans,
S. Y. F. Wong, B. H. Warrington, Lab Chip 2003, 3, 73 – 76; g) M.
Ueno, H. Hisamoto, T. Kitamori, S. Kobayashi, Chem. Commun.
2003, 936 – 937; h) S. M. Lai, R. Martin-Aranda, K. L. Yeung,
Chem. Commun. 2003, 218 – 219; i) J. Kobayashi, Y. Mori, K.
Okamoto, R. Akiyama, M. Ueno, T. Kitamori, S. Kobayashi,
Science 2004, 304, 1305 – 1308; j) T. Wu, Y. Mei, J. T. Cabral, C.
Xu, K. L. Beers, J. Am. Chem. Soc. 2004, 126, 9880 – 9881.
[3] Example reviews: a) S. H. DeWitt, Curr. Opin. Chem. Biol. 1999,
3, 350 – 356; b) H. Okamoto, J. Syn. Org. Chem. Jpn. 1999, 57,
805 – 812; c) T. Sugawara, Pharmacia 2000, 36, 34 – 38; d) O.
Wꢀrz, K. P. Jꢁckel, T. Richter, A. Wolf, Chem. Eng. Sci. 2001, 56,
1029 – 1033; e) S. J. Haswell, R. J. Middleton, B. OꢂSullivan, V.
Skelton, P. Watts, P. Styring, Chem. Commun. 2001, 391 – 398;
f) K. F. Jensen, Chem. Eng. Sci. 2001, 56, 293 – 303; g) A.
de Mello, R. Wootton, Lab Chip 2002, 2, 7N – 13N; h) K.
Jꢁhnisch, V. Hessel, H. Lꢀwe, M. Baerns, Angew. Chem. 2004,
116, 410 – 451; Angew. Chem. Int. Ed. 2004, 43, 406 – 446. .
[4] S. Taghavi-Moghadam, A. Kleemann, K. G. Golbig, Org. Process
Res. Dev. 2001, 5, 652 – 658.
It is important to check the durability of the process for
scale-up. So, we ran the reaction of cyclohexanol for 3 h
(0.36 mol scale) at 208C and found that the alcohol con-
version and product selectivity did not change (Table 2).
Table 2: Continuous Swern oxidation of cyclohexanol by using the
microscale flow system at 208C.[a]
t [h]
Conversion
[%]
Yield
of V [%]
Yield
of VI [%]
Yield
of VII [%]
0
83
84
85
81
86
87
85
92
92
89
89
91
91
91
5
5
5
4
5
5
5
4
4
4
4
3
3
4
0.5
1.0
1.5
2.0
2.5
3.0
[5] a) R. D. Chambers, R. C. H. Spink, Chem. Commun. 1999, 883 –
884; b) M. T. Janicke, H. Kestenbaum, U. Hagendorf, F. Schꢃth,
M. Fichtner, K. Schubert, J. Catal. 2000, 191, 282 – 293; c) M. W.
[a] Yields were determined by GC with an internal standard and are based
upon the amount of the alcohol consumed.
Angew. Chem. Int. Ed. 2005, 44, 2413 –2416
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2415