C O M M U N I C A T I O N S
Scheme 2
Chem. Res. 2000, 33, 511-519. (d) Houpis, I. N.; Lee, J. Tetrahedron
2000, 56, 817-846. (e) Montgomery, J.; Amarasinghe, K. K. D.;
Chowdhury, S. K.; Oblinger, E.; Seo, J.; Savchenko, A. V. Pure Appl.
Chem. 2002, 74, 129-133.
(2) (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065-
9066. (b) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221-
4223. (c) Colby, E. A.; Jamison, T. F. J. Org. Chem. 2003, 68, 156-166.
(d) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003,
125, 3442-3443. (e) Takai, K.; Sakamoto, S.; Isshiki, T. Org. Lett. 2003,
5, 653-655.
(3) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364-1367.
(4) (a) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc.
1998, 120, 4033-4034. (b) Sato, Y.; Saito, N.; Mori, M. J. Org. Chem.
2002, 67, 9310-9317. (c) Ezoe, A.; Kimura, M.; Inoue, T.; Mori, M.;
Tamaru, Y. Angew. Chem., Int. Ed. 2002, 41, 2784-2786.
Ni-C and Ni-O bonds might be expected to accommodate the
bridgehead olefin.16
(5) (a) Montgomery, J.; Song, M. Org. Lett. 2002, 4, 4009-4011. (b) Kang,
S.-K.; Yoon, S.-K. Chem. Commun. 2002, 2634-2635.
Further support for A and the mechanistic proposal in Scheme
1 is the isolation of products of epoxide isomerization such as
acetophenone and 2-octanone (Table 1, entries 7 and 8, respec-
tively), which can be attributed to collapse of the metallaoxetane
to a nickel(II) enolate14c,16 and subsequent reductive elimination.
The experiment shown in Scheme 2 confirms that optical purity
is preserved in the Ni-catalyzed alkyne-epoxide reductive coupling
and is a further demonstration of the utility of this method. Using
only commercially available reagents and catalysts, this procedure
is an alternative to enantioselective addition of allylmetal reagents
to aldehydes17 and, after further elaboration, affords in >99% ee18
a â-silyloxyketone (4) that corresponds to an asymmetric acetone-
acetaldehyde aldol addition reaction.
The catalytic reaction described here represents the first use of
a non-π-based electrophile in a growing class of nickel-catalyzed,
multicomponent coupling reactions. It is also the first catalytic
method of reductive coupling of alkynes and epoxides that is
effective for both intermolecular and intramolecular cases and may
also be mechanistically unique among these (nickella(II)oxetane).
Another feature that is unprecedented in existing methods is the
complete selectivity for the usually disfavored endo epoxide-
opening product in alkyne-epoxide reductive cyclizations. Finally,
the utility and ease of implementation of this method are direct
results of the availability of terminal epoxides in >99% ee.19 We
continue to investigate the mechanistic details and potential
applications of this method to the synthesis of carbocyclic and
heterocyclic natural products.
(6) Other Ni-catalyzed π-π reactions: (a) Lozanov, M.; Montgomery, J. J.
Am. Chem. Soc. 2002, 124, 2106-2107. (b) Takimoto, M.; Mori, M. J.
Am. Chem. Soc. 2002, 124, 10008-10009.
(7) (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986-
997. (b) Gansa¨uer, A.; Pierobon, M.; Bluhm, H. Angew. Chem., Int. Ed.
1998, 37, 101-103. (c) Gansa¨uer, A.; Bluhm, H.; Pierobon, M. J. Am.
Chem. Soc. 1998, 120, 12849-12859. See also: Madhushaw, R. J.; Li,
C.-L.; Shen, K.-H.; Hu, C.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123,
7427-7428.
(8) Epoxide opening by allylnickel reagents: (a) Corey, E. J.; Semmelhack,
M. F. J. Am. Chem. Soc. 1967, 89, 2755-2757. (b) Hegedus, L. S.;
Wagner, S. D.; Waterman, E. L.; Siirala-Hansen, K. J. Org. Chem. 1975,
40, 593-598. (c) Nickel-catalyzed carboxylation of epoxides (cyclic
carbonates via C-O bond formation): Tascedda, P.; Dunach, E. J. Chem.
Soc., Chem. Commun. 1995, 43-44. (d) Nickel-catalyzed halogenation
of epoxides: Yang, Z.-Y. J. Am. Chem. Soc. 1996, 118, 8140-8141.
(9) Standard procedure: To a mixture of Ni(cod)2 (0.50 mmol), Bu3P (1.00
mmol), Et3B (2.00 mmol), the epoxide (10.0 mmol), and the alkyne (5.00
mmol) at room temperature was added additional Et3B (8.00 mmol) via
syringe pump over 4 h, and the resulting solution was stirred 24 h.
Treatment with NaOH/H2O2 and purification (SiO2) afforded the homo-
allylic alcohol.
(10) Alkene geometry confirmed by NOE experiments. See Supporting
Information.
(11) Terminal alkynes afforded 15-20% yields of homoallylic alcohols due
to competing alkyne cyclotrimerization, and disubstituted epoxides did
not undergo reductive coupling under these conditions.
(12) The selectivity trends in ring-opening reactions of aryloxiranes often differ
from those of alkyloxiranes: (a) Winstein, S.; Henderson, R. B. Ethylene
and Trimethylene Oxides. In Heterocyclic Compounds; Elderfield, R. C.,
Ed.; Wiley: New York, 1950; Vol. 1. (b) Parker, R. E.; Isaacs, N. S.
Chem. ReV. 1959, 59, 737-799. (c) Wohl, R. A. Chimia 1974, 28, 1-5.
(13) Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973,
26, 2521-2526.
(14) Nickella(II)oxetanes have not been isolated in pure form but have been
proposed as intermediates in catalytic reactions: (a) De Pasquale, R. J. J.
Chem. Soc., Chem. Commun. 1973, 157-158. (b) Ba¨ckvall, J.-E.;
Karlsson, O.; Ljunggren, S. O. Tetrahedron Lett. 1980, 21, 4985-4988.
(c) Miyashita, A.; Shimada, T.; Sugawara, A.; Nohira, H. Chem. Lett.
1986, 1323-1326. Computational studies: (d) Ba¨ckvall, J.-E.; Bo¨kman,
F.; Blomberg, M. R. A. J. Am. Chem. Soc. 1992, 114, 534-538. (e)
Mavrikakis, M.; Doren, D. J.; Barteau, M. A. J. Phys. Chem. B 1998,
102, 394-399. (f) Medlin, J. W.; Mavrikakis, M.; Barteau, M. A. J. Phys.
Chem. B 1999, 103, 11169-11175. (g) Gas-phase studies (Ni): Kline,
E.; Hauge, R. H.; Margrave, J. L.; Zakya. H. High Temp. Sci. 1990, 30,
69-82.
(15) X-ray structures of related complexes: Pd(II)- and Pt(II)-metallaoxet-
anes: (a) Schlodder, R.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Am.
Chem. Soc. 1974, 96, 6893-6900. (b) Lenarda, M.; Ros, R.; Traverso,
O.; Pitts, W. D.; Baddley, W. H.; Graziani, M. Inorg. Chem. 1977, 16,
3178-3182. (c) Aye, K.-T.; Gelmini, L.; Payne, N. C.; Vittal, J. J.;
Puddephatt, R. J. J. Am. Chem. Soc. 1990, 112, 2464-2465. (d) Nickella-
(II)azetidine: Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem.
Soc. 2002, 124, 2890-2891.
(16) (a) Burkhardt, E. R.; Bergman, R. G.; Heathcock, C. H. Organometallics
1990, 9, 30-44. (b) Ni(II)-O-enolate: Amarasinghe, K. K. D.; Chowdhury,
S. K.; Heeg, M. J.; Montgomery, J. Organometallics 2001, 20, 370-372.
(17) Roush, W. R. Allyl Organometallics. In ComprehensiVe Organic Synthesis;
Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 1.
(18) Hayes, C. J.; Heathcock, C. H. J. Org. Chem. 1997, 62, 2678-2679.
(19) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science
1997, 277, 936-938. (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.;
Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E.
N. J. Am. Chem. Soc. 2002, 124, 1307-1315.
Acknowledgment. Postdoctoral support was provided by the
Fonds Que´be´cois de la Recherche sur la Nature et les Technologies
(FQRNT, fellowship to C.M.) and Boehringer-Ingelheim (New
Investigator Award to T.F.J.). We also thank the National Institute
of General Medical Sciences (GM-063755), the NSF (CAREER
CHE-0134704), the donors of the Petroleum Research Fund,
Amgen, Boehringer-Ingelheim, Bristol-Myers Squibb, Johnson &
Johnson, Merck Research Laboratories, Pfizer, 3M, and MIT for
financial support. The NSF (CHE-9809061 and DBI-9729592) and
NIH (1S10RR13886-01) provide partial support for the MIT
Department of Chemistry Instrumentation Facility.
Supporting Information Available: Experimental procedures and
data for 1a-d, 2a-e, 3a-e, and 4 (PDF). This material is available
References
(1) Reviews: (a) Tamaru, Y. J. Organomet. Chem. 1999, 576, 215-231. (b)
Montgomery, J. Acc. Chem. Res. 2000, 33, 467-473. (c) Ikeda, S.-i. Acc.
JA0361401
9
J. AM. CHEM. SOC. VOL. 125, NO. 27, 2003 8077