ORGANIC
LETTERS
2003
Vol. 5, No. 14
2547-2549
Synthesis of Novel Phenylazomethine
Dendrimers Having a Cyclam Core and
Their Zinc Complex
Osamu Enoki, Takane Imaoka, and Kimihisa Yamamoto*
Department of Chemistry, Faculty of Science & Technology, Keio UniVersity,
Yokohama 223-8522, Japan
Received May 13, 2003
ABSTRACT
Novel phenylazomethine dendrimers having a cyclam core were synthesized by the convergent method. The dendrimers showed selective
coordination with zinc chloride on the cyclam ring and with tin chloride on the imine groups. The metal cyclam exhibits a metal-assembling
function to provide a multinuclear hetero metal complex.
The metallodendrimer is an attractive material for catalysts1
and optic/electronic/magnetic devices2 as a result of total
control of its properties through modification of the chemical
structure. We found that phenylazomethine dendrimers have
the special property of performing a stepwise radial com-
plexation,3 layer-selective complexation between a tin(II)
chloride and the imine group from the core to periphery.
Recently, we reported that these metal-coordinated dendrons
cause an interesting effect on the core molecule and
drastically change its function.3b
Cyclam (1,4,8,11-tetraazacyclotetradecane, 1) is a mac-
rocyclic polyamine ligand for various metal salts and forms
a stable 1:1 complex. The cyclam and its complex are
interesting materials because some of them exhibit extra-
ordinary properties for catalysis or medical use.4 In this
Letter, we report the synthesis of novel phenylazomethine
dendrimers having a cyclam core and their metal complexes,
which are expected to provide a new structure for metal-
organic hybrid nanomaterials.
The dendrimer core 2 was obtained in good yield from 1
by simple reduction of the nitro groups after reaction with
R-bromo-p-nitrotoluene (Scheme 1). The phenylazomethine
dendrons were synthesized by the convergent method,5
repeating the dehydration between the amino and ketone
group using titanium(IV) chloride as a dehydrating agent.
(1) (a) Astruc, D.; Chardac F. Chem. ReV. 2001, 101, 2991. (b) van
Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H.
Chem. ReV. 2002, 102, 3717. (c) Oosterom, G. E.; Reek, J. N. H.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001, 40, 1828.
(2) (a) Nishide, H.; Ozawa, T.; Miyasaka, M.; Tsuchida, E. J. Am. Chem.
Soc. 2001, 123, 5949. (b) Nishide, H.; Miyasaka, M.; Tsuchida, E. J. Org.
Chem. 1998, 63, 7399. (c) Balzani, V.; Ceroni, P.; Juris, A.; Venturi, M.;
Campagna, S.; Puntoriero, F.; Serroni, S. Coord. Chem. ReV. 2001, 219-
221, 545. (d) Campagna, S.; Di Pietro, C.; Loiseau, F.; Maubert, B.;
McClenaghan, N.; Passalacqua, R.; Puntoriero, F.; Ricevuto, V.; Serroni,
S. Coord. Chem. ReV. 2002, 229, 67. (e) Kawa, M.; Fre´chet, J. M. J. Chem.
Mater. 1998, 10, 286. (f) Adronov, A.; Fre´chet, J. M. J. Chem. Commun.
2000, 1701. (g) Ma, H.; Jen, A. K.-Y. AdV. Mater. 2001, 13, 1201.
(3) (a) Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H.
Nature 2002, 415, 509. (b) Imaoka, T.; Horiguchi, H.; Yamamoto, K. J.
Am. Chem. Soc. 2003, 125, 340.
(4) (a) Beley, M.; Collin, J.-P.; Ruppert, R.; Sauvage, J.-P. J. Chem.
Soc., Chem. Commun. 1984, 1315. (b) Beley, M.; Collin, J.-P.; Ruppert,
R.; Sauvage, J.-P. J. Am. Chem. Soc. 1986, 108, 7461. (c) Collin, J.-P.;
Sauvage, J.-P. Coord. Chem. ReV. 1989, 93, 245. (d) De Clercq, E.;
Yamamoto, N., Pauwel, R.; Baba, M.; Schols, D.; Nakashima, H.; Balzarini,
J.; Debyser, Z.; Murrer, B. A.; Schwartz, D.; Thoronton, D.; Bridger, G.;
Fricker, S.; Henson, G.; Abrams, M.; Picker, D. Proc. Natl. Acad. Sci. U.S.A.
1992, 89, 5286. (e) Bridger, G.; Skerlj, R. T.; Padmanabhan, S.; Thornton,
D. J. Org. Chem. 1996, 61, 1519.
10.1021/ol034817j CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/13/2003