research papers
(XI), which unexpectedly crystallizes as a stoichiometric
monohydrate just like compound (III), the amidic N—H bond
acts as a hydrogen-bond donor to the water molecule, and
these bimolecular aggregates are linked by a combination of
O—Hꢀ ꢀ ꢀN and O—Hꢀ ꢀ ꢀO hydrogen bonds to form a chain of
edge-fused rings containing two different types of R44ð16Þ ring.
Thus, despite the different composition and constitutions of
(III) and (XI), their supramolecular aggregation patterns
show a considerable degree of similarity.
Daresbury SRS Station 9.8, for which we thank the EPSRC-
funded synchrotron crystallography service and Professor W.
Clegg. JLW and SMSVW thank CNPq and FAPERJ for
financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew.
Chem. Int. Ed. Engl. 34, 1555–1573.
Bruker (2004). APEX2, SADABS and SAINT, Version 6.02a. Bruker
AXS Inc., Madison, Wisconsin, USA.
Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty,
J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. & Teat,
S. J. (1997). J. Synchrotron Rad. 4, 279–286.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Gdaniec, M., Jaskolski, M. & Kosturkiewicz, Z. (1979). Pol. J. Chem.
53, 2563–2569.
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta
Cryst. C61, o276–o280.
Hooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.
Jethmalani, J. M., Camp, A. G., Soman, N. G., Hawley, J. W., Setliff,
F. L. & Holt, E. M. (1996). Acta Cryst. C52, 438–441.
McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystal-
lography Centre, Chemistry Department, NUI Galway, Ireland.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol.
276, Macromolecular Crystallography, Part A, edited by C. W.
Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
The unsubstituted amide (XII) (CSD code PYDCXA10;
Gdaniec et al., 1979), which may be regarded as the parent
compound for this whole series, forms simple C(4) chains built
from N—Hꢀ ꢀ ꢀO hydrogen bonds, and these chains are linked
in pairs by a centrosymmetric ꢀꢀ ꢀ ꢀꢀ stacking interaction. In
the dichloro compound (XIII) (CSD code HIFWUO;
Jethmalani et al., 1996), a combination of N—Hꢀ ꢀ ꢀN and C—
Hꢀ ꢀ ꢀN hydrogen bonds generates a C(3)C(6)[R12ð7Þ] chain of
rings, but no N—Hꢀ ꢀ ꢀO hydrogen bonds are present.
The ease with which the C(4) motif can be disrupted, not
only by the presence of water molecules in the structure, but
also by intramolecular hydrogen bonds, is shown both by (X),
and by (XIV) (CSD code MURWUR; Zhang et al., 2002) and
`
(XV) (CSD code ZIKWEX; Pepe et al., 1995), where the
amidic N—H bonds participate respectively in intramolecular
N—Hꢀ ꢀ ꢀN and N—Hꢀ ꢀ ꢀO hydrogen bonds. The supramole-
cular structure of (XIV) consists of simple C(6) chains built
from C—Hꢀ ꢀ ꢀO hydrogen bonds, while the structure of (XV)
consists of effectively isolated molecules with no direction-
specific intermolecular interactions of any kind.
`
Pepe, G., Pfefer, G. & Boistelle, R. (1995). Acta Cryst. C51, 2671–
2672.
Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005).
Acta Cryst. C61, o452–o456.
Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a).
Acta Cryst. E61, o1058–o1060.
Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b).
Acta Cryst. E61, o1702–o1703.
¨
Sheldrick, G. M. (1997a). SHELXS97 University of Gottingen,
4. Concluding remarks
The variations in the unit-cell dimensions in (I)–(IX) and the
consequent absence of any isomorphisms, together with the
very wide variations in the active intermolecular interactions
and in the resulting supramolecular structures, both for these
compounds and for the related compounds (X)–(XV), raise
the question of whether supramolecular structures of this type,
dependent on weak intermolecular forces, are likely to
become reliably predictable in the foreseeable future.
Germany.
Sheldrick, G. M. (1997b). SHELXL97. University of Gottingen,
¨
Germany.
Sheldrick, G. M. (2003). SADABS, Version 2.10. University of
¨
Gottingen, Germany.
Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell,
J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204–o208.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23,
969–972.
Wilson, A. J. C. (1976). Acta Cryst. A32, 994–996.
Zhang, J.-Y., Tu, C., Lin, J., Fun, H.-K., Chantrapromma, S., You,
X.-Z. & Guo, Z.-J. (2002). Chin. J. Inorg. Chem. 18, 554–558.
We thank the EPSRC National Crystallography Service,
University of Southampton, UK, for collecting the X-ray data
for (I) and (III)–(VIII). Data for (II) were collected on
ꢄ
Acta Cryst. (2006). B62, 651–665
Silvia Cuffini et al.
Nine N-aryl-2-chloronicotinamides 665