Journal of the American Chemical Society
COMMUNICATION
ring-closing metathesis, see: (b) Burdett, K. A.; Harris, L. D.; Margl, P.;
Maughon, B. R.; Mokhtar-Zadeh, T.; Saucier, P. C.; Wasserman, E. P.
Organometallics 2004, 23, 2027–2047. (c) Lysenko, Z.; Maughon, B. R.;
Mokhtar-Zadeh, T.; Tulchinsky, M. L. J. Organomet. Chem. 2006,
691, 5197–5203. (d) Monfette, S.; Eyholzer, M.; Roberge, D. M.; Fogg,
D. E. Chem.—Eur. J. 2010, 11720–11725.
2001, 42, 8231–8233. (b) F€urstner, A.; Ackermann, L.; Gabor, B.;
Goddard, R.; Lehmann, C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R.
Chem.—Eur. J. 2001, 7, 3236–3253. (c) Saito, N.; Sato, Y.; Mori, M. Org.
Lett. 2002, 4, 803–805. (d) Giessert, A. J.; Snyder, L.; Markham, J.;
Diver, S. T. Org. Lett. 2003, 5, 1793–1796. (e) Park, S.; Kim, M.; Lee, D.
J. Am. Chem. Soc. 2005, 127, 9410–9415. (f) Clavier, H.; Nolan, S. P.
Chem.—Eur. J. 2007, 13, 8029–8036. (g) Castarlenas, R.; Eckert, M.;
Dixneuf, P. H. Angew. Chem., Int. Ed 2005, 44, 2576–2579. Most of these
examples involve Ru-NHC catalysts, perhaps contributing to the
perception that such catalysts do not require use of ethylene for
successful RCEYM; the latter involves the in situ Dixneuf catalyst.
(22) RCEYM yields were previously shown to be improved by
increasing propargylic substitution for reactions under ethylene. See:
Kitamura, T.; Sato, Y.; Mori, M. Adv. Synth. Catal. 2002, 344, 678–693.
(9) Eelman, M. D.; Blacquiere, J. M.; Moriarty, M. M.; Fogg, D. E.
Angew. Chem., Int. Ed. 2008, 47, 303–306.
(10) Consistent with this concentration-dependence is behaviour
observed by Hoye and co-workers, who recognized in early, ethylene-
free work that the ene-first mechanism (see later) necessitates reaction
with incoming enyne to liberate the diene product, and therefore
proposed that increased enyne concentrations might be beneficial.
Conversions were indeed dramatically improved by slow addition of
Ru-1 to enyne, but yields suffered. These reaction conditions promote
the formation of oligomers. See: Hoye, T. R.; Donaldson, S. M.; Vos,
T. J. Org. Lett. 1999, 1, 277–279.
(11) The likelihood of forming an allylic dichlororuthenium com-
plex by rearrangement of the vinyl ruthenacyclobutane intermediate
itself has been examined computationally (ref 12); this was found to be a
high-energy process. Here, we envisage formation of an allylic species via
CꢀH activation of a pendant olefin.
(12) Lippstreu, J. J.; Straub, B. F. J. Am. Chem. Soc. 2005, 127, 7444–
7457.
(13) Monfette, S.; Fogg, D. E. Chem. Rev. 2009, 109, 3783–3816.
(14) Conrad, J. C.; Eelman, M. D.; Duarte Silva, J. A.; Monfette, S.;
Parnas, H. H.; Snelgrove, J. L.; Fogg, D. E. J. Am. Chem. Soc. 2007,
129, 1024–1025.
(15) We use the term oligomers for convenience, but note that these
will include any dimers that are insufficiently volatile to emerge under
our GC conditions. Liberation of dimeric products by competing
turnover of Ru-B with enyne is highly probable, and indeed such
products have been isolated for enyne metathesis in the absence of
ethylene (see (a) Diver, S. T.; Kulkarni, A. A.; Clark, D. A.; Peppers, B. P.
J. Am. Chem. Soc. 2007, 129, 5832–5833). Enyne-derived oligomers have
been isolated in Group 6 catalysis; see ref 16. Symmetrical dimers can
also form (if the catalyst is sufficiently reactive) by cross-metathesis of
the conjugated dienes, but this is slow even in refluxing CH2Cl2 (see,
e.g., (b) Poulsen, C. S.; Madsen, R. J. Org. Chem. 2002, 67, 4441–4449).
We observe no such behaviour at room temperature (see, for example,
the rate curves for RCEYM via Ru-4 in the Supporting Information).
(16) For leading references to alkyne polymerization by group 6
catalysts, see: (a) Lee, Y.-J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem.
Soc. 2009, 131, 10652–10661. (b) Zhao, Y.; Hoveyda, A. H.; Schrock,
R. R. Org. Lett. 2011, 13, 784–787.
(17) The overall process of enyne metathesis can be reversed under
some conditions, however. See: Lee, H.-Y.; Kim, B. G.; Snapper, M. L.
Org. Lett. 2003, 5, 1855–1858.
(18) In their 2005 computational study, Lippstreu and Straub
explicitly treated alkyne polymerization as a potential side-reaction in
Ru-catalyzed enyne cross-metathesis; ref 12. A side-reaction yielding
alkyne cyclodimers was observed by Diver and co-workers, for which an
initial sequence corresponding to Scheme 2a was proposed; ref 15a. The
susceptibility of the Ru catalysts to alkyne polymerization was accepted
by Hoveyda and Schrock (ref 16), and segregation of the catalyst in a
deactivation process was suggested. Alkyne polymerization should be
distinguished from potentially competing ring-opening metathesis po-
lymerization in intermolecular enyne metathesis of cycloalkenes. See,
e.g., (a) Kulkarni, A. A.; Diver, S. T. Org. Lett. 2003, 5, 3463–3466.
(b) Banti, D.; North, M. Adv. Synth. Catal. 2002, 344, 694–704.
(19) Kinoshita, A.; Sakakibara, N.; Mori, M. J. Am. Chem. Soc. 1997,
119, 12388–12389.
(20) Stragies, R.; Schuster, M.; Blechert, S. Angew. Chem., Int. Ed.
Engl. 1997, 36, 2518–2520.
(21) For selected examples of successful RCEYM in the absence of
ethylene, in which propargylic substitution emerges as a common
structural motif, see ref 6b and: (a) Timmer, M. S. M.; Ovaa, H.;
Filippov, D. V.; van der Marel, G. A.; van Boom, J. H. Tetrahedron Lett.
15921
dx.doi.org/10.1021/ja207388v |J. Am. Chem. Soc. 2011, 133, 15918–15921