580
K.-H. Yih et al. / Inorganic Chemistry Communications 6 (2003) 577–580
[9]. Reactions and different bonding modes of 2 and
nucleophiles are currently under investigation.
[3]Spectroscopy for 2: 31P {1H} NMR: d 16.6 (br, PPh3). 1H NMR: d
2.34, 2.64 (s, 6H, NCH3), 7.31–8.05 (m, 30H, Ph). 13C{1H} NMR: d
41.5 (s, NCH3), 128.4–135.8 (m, C of Ph), 223.5 (s, CS). Anal.
Calcd. for C39H36ClNP2SPd: C, 62.08; H, 4.81; N, 1.86%. Found:
C, 62.10; H, 4.81; N, 1.84. Spectroscopy for 3: 31P{1H} NMR: d
2
23.1, 35.1 (d, JP–P ¼ 40:7). 1H NMR: d 2.39, 3.58 (s, 6H, NCH3),
Acknowledgements
7.31–8.05 (m, 30H, Ph). 13C{1H} NMR: d 46.1, 53.4 (s, NCH3),
128.4–135.8 (m, C of Ph). Spectroscopy for 4: 31P{1H} NMR: d
19.8 (s, PPh3). 1H NMR: d 2.51, 3.44 (s, 6H, NCH3), 7.28–8.05 (m,
15H, Ph). 13C{1H} NMR: d 39.9, 49.1 (s, NCH3), 128.4–135.8 (m,
C of Ph), 234.4 (s, CS). Anal. Calcd. for C42H42Cl2N2P2S2Pd2: C,
51.23; H, 4.30; N, 2.85%. Found: C, 51.28; H, 4.21; N, 2.80.
[4](a) G. Yoshida, H. Kurosawa, R. Okawara, J. Organomet. Chem.
113 (1976) 85;
We thank the National Science Council of Taiwan,
the Republic of China (NSC91-2113-214-002) for sup-
port.
References
(b) J.F. Ma, Y. Kojima, Y. Yamamoto, J. Organomet. Chem. 616
(2000) 149.
[1](a) C.R. Green, R.J. Angelici, Inorg. Chem. 11 (1972) 2095;
(b) R.J. Angelici, Acc. Chem. Res. 5 (1972) 335;
(c) A.W. Gal, H.P.M.M. Ambrosius, A.F.J.M. Van der Ploge,
W.P. Bosman, J. Organomet. Chem. 149 (1978) 81;
(d) W.K. Dean, J.B. Wetherington, J.W. Moncrieff, Inorg. Chem.
15 (1976) 1566;
[5]Spectroscopy for 5: IR (KBr, tPF6=cmÀ1): 839 (vs). 31P{1H} NMR:
d 23.2, 34.8 (d, 2JP–P ¼ 40:7, PPh3), )144.0 (sep, JP–F ¼ 708:6, PF6).
1H NMR: d 2.45, 3.61 (s, 6H, NCH3), 7.24–7.73 (m, 30H, Ph). 13
C
{1H} NMR: d 45.9, 53.9 (s, NCH3), 128.8–134.0 (m, C of Ph), 212.1
2
(d, CS, JP–C ¼ 6:7). Anal. Calcd. for C39H36F6 NP3SPd: C, 54.21;
H, 4.20; N, 1.62 %. Found: C, 54.25; H, 4.18; N, 1.70.
[6]Crystal data for 2: C39H36ClN2P2PdS, space group P21=n,
(e) W.P. Bosman, A.W. Gal, Cryst. Struct. Commun. 4 (1975) 465;
(f) L. Ricard, J. Estienne, R. Weiss, Inorg. Chem. 12 (1973) 2182;
(g) G.L. Miessler, L.H. Pignolet, Inorg. Chem. 18 (1979) 210;
(h) S.K. Porter, H. White, C.R. Green, R.J. Angelici, J. Clardy, J.
Chem. Soc., Chem. Commun. (1973) 493;
ꢀ
ꢀ
ꢀ
a ¼ 12:8248ð1Þ A, b ¼ 18:6358ð1Þ A, c ¼ 14:9692ð1Þ A, b ¼
ꢀ3
105:1513ð4Þ°, V ¼ 3453:28ð5Þ A , Z ¼ 4, Dcalcd ¼ 1:451 gcmÀ3
,
l ¼0:797 mmÀ1
,
independent reflections 24,507, hrange ¼ 1:78–
27:50°. Total number of parameters: 407. R ¼ 0:043, Rw ¼ 0:090;
(i) C. Mahe, H. Patin, A. Benoit, J. Le Marouille, J. Organomet.
Chem. 216 (1981) C15;
ꢀ
GOF ¼ 1.049, Mo-Ka radiation; k ¼ 0:71073 A; T ¼ 150ð1Þ K;
ꢀ3
DF ¼ 0:843, )0.893e A . Crystal data for 4 Á CH2Cl2: C43H44
(j) P.F. Gilletti, D.A. Femec, T.M. Brown, Inorg. Chem. 31 (1992)
4008;
ꢀ
ꢀ
Cl4N2P2Pd2S2, space group P1, a ¼ 9:8782ð1Þ A, b ¼ 11:4238ð1Þ A,
ꢀ
c ¼ 20:7353ð2Þ A, a ¼ 103:9126ð5Þ°, b ¼ 97:8453ð3Þ° c ¼
(k) R.S. Herrick, S.J. Nieter-Burgmayer, J.L. Templeton, J. Am.
Chem. Soc. 105 (1983) 2599;
ꢀ3
104:9669ð5Þ°, V ¼ 2166:76ð4Þ A , Z ¼ 2, Dcalcd ¼ 1:639 gcmÀ3
,
l ¼ 1:281 mmÀ1
,
independent reflections 39,233, hrange ¼ 1:02–
(l) S.J. Nieter-Burgmayer, J.L. Templeton, Inorg. Chem. 24 (1985)
3939;
27:50°. Total number of parameters: 497. R ¼ 0:0409, Rw
¼
ꢀ
0:0969; GOF ¼ 1.103, Mo-Ka radiation; k ¼ 0:71073 A; T ¼
(m) D.C. Brower, T.L. Tonker, J.R. Morrow, D.S. Rivers, J.L.
Templeton, Organometallics 5 (1986) 1094;
ꢀ3
150ð1Þ K; DF ¼ 1:730, )1.261e A . Crystal data for 5:
ꢀ
C39H36F6NP3PdS Á CH2Cl2, space group P21=c, a ¼ 9:8101ð1Þ A,
(n) E. Carmona, E. Gurierrez-Puebla, A. Monge, P.J. Perez, L.J.
Sanchez, Inorg. Chem. 28 (1989) 2120;
ꢀ
ꢀ
b ¼ 23:5315ð3Þ A, c ¼ 18:2112ð2Þ A, b ¼ 103:2337ð5Þ°, V ¼
ꢀ3
4092:35ð4Þ A , Z ¼ 4, Dcalcd ¼ 1:540 gcmÀ3; l ¼ 0:810 mmÀ1, inde-
(o) J.C. Jeffery, M.J. Went, J. Chem. Soc. Dalton Trans. (1990) 567;
(p) S. Anderson, D.J. Cook, A.F. Hill, Organometallics 20 (2001)
2468;
pendent reflections 27,983, hrange ¼ 1:44–27:50°. Total number of
parameters: 498. R ¼ 0:064, Rw ¼ 0:148; GOF ¼ 1.038, Mo-Ka
ꢀ
ꢀ3
radiation; k ¼ 0:71073 A ; T ¼ 150ð1Þ K; DF ¼ 1:543, )1.136e A .
Absorption corrections of 2, 4, and 5 have been carried out.
These structures were solved by Patterson synthesis and then
refined via standard least-squares and difference Fourier tech-
niques. Non-hydrogen atoms were refined by using anisotropic
thermal parameters.
(q) W.K. Dean, J. Organomet. Chem. 190 (1980) 353;
(r) D.H.M.W. Thewissen, J.G. Noltes, Inorg. Chim. Acta. 59
(1982) 181;
(s) J.A.E. Gibson, M. Cowie, Organometallics 3 (1984) 722;
(t) X.L. Fan, R. Cao, M.C. Hong, W.P. Su, D.F. Sun, J. Chem.
Soc. Dalton Trans (2001) 2961.
[7]T. Kashiwagi, N. Yasuoka, T. Ueki, N. Kasai, M.
Kakudo, S. Takahashi, N. Hagihara, Bull. Chem. Soc.
(1968) 296.
[2](a) K.H. Yih, Y.C. Lin, M.C. Cheng, Y. Wang, Organometallics
13 (1994) 1561;
(b) K.H. Yih, Y.C. Lin, G.H. Lee, Y. Wang, J. Chem. Soc., Chem.
Commun. (1995) 223;
[8]H.L. Bozec, P.H. Dixneuf, A.J. Carty, N.J. Taylor, Inorg. Chem.
17 (1978) 2568.
(c) K.H. Yih, G.H. Lee, Y. Wang, Inorg. Chem. 39 (2000) 2445;
(d) K.H. Yih, G.H. Lee, Y. Wang, Inorg. Chem. Commun. 6 (2003)
213.
[9]T. Yoshida, Y. Ueda, S. Otsuka, J. Am. Chem. Soc. 100 (1978)
3941.