M.F. Ibrahim et al. / Journal of Molecular Structure 1006 (2011) 303–311
311
Table 6
Experimental and calculated chemical shift of all protons in ppm of arylbenzoate derivatives (3a–g).
Proton no
X = H
4-OCH3
4-CH3
3-CH3
4-Cl
3-Cl
4-NO2
H-25
H-26
H-27
H-28
H-29
H-30
H-31
H-32
H-33
H-34
H-35
8.55 (8.16)
7.90 (7.57)
8.08 (7.75)
7.86 (7.57)
8.48 (8.16)
9.43 (9.18)
9.53 (9.18)
8.75 (8.11)
7.12 (7.02)
8.45 (8.04)
7.75 (7.36)
8.15 (7.96)
7.84 (7.45)
7.97 (7.55)
8.72 (8.09)
7.78 (7.55)
8.66 (8.06)
7.91 (7.53)
7.92 (7.72)
7.96 (8.12)
8.03 (8.28)
7.26 (7.02)
8.34 (8.11)
9.45 (9.15)
9.46 (9.15)
7.60 (7.36)
8.35 (8.04)
9.41 (9.16)
9.50 (9.16)
2.66 (2.48)
2.57 (2.48)
2.06 (2.48)
7.72 (7.55)
8.42 (8.09)
9.51 (9.18)
9.48 (9.18)
8.07 (8.28)
8.18 (8.12)
9.08 (8.55)
8.78 (8.55)
8.20 (7.96)
9.41 (9.17)
9.53 (9.17)
2.01 (2.46)
2.56 (2.46)
2.64 (2.46)
8.32 (8.14)
9.54 (9.20)
9.49 (9.20)
3.85 (3.92)
4.18 (3.92)
3.85 (3.92)
Value between brackets corresponds to the experimental chemical shift.
8. The vibrational frequency
Appendix A. Supplementary material
Molecular structures of 2,4,6-trinitrophenylbenzoate deriva-
tives 3a–g were first fully optimized at B3LYP/6-31Gꢀꢀ level meth-
od. The observed experimental FT-IR spectra for the compounds
3a–g and theoretically predicted IR spectra obtained by DFT/
B3LYP method with 6-31Gꢀꢀ basis set are given in Table 5. In exper-
imental IR measurements, the most remarkable concern for these
esters is directed to the C@O and NO2 bands. The calculated vibra-
tional frequencies are scaled by 0.961 scaling factor [30], but their
values still higher than the observed ones for the majority of the
normal modes. Two factors may be responsible for the discrepan-
cies between the experimental and computed spectra: The first is
the fact that the experimental value is unharmonic frequency
while the calculated value is a harmonic frequency. The second
reason caused by the environment [31] where the calculations
have been actually done on a single molecule while the experimen-
tal values recorded in the presence of intermolecular interactions.
A linearity between the experimental and calculated wave number
for the carbonyl group, can be estimated by plotting the calculated
versus experimental wave numbers Fig. 9. The plot shows that the
strong electron donating substituent 4-OCH3 and the 3-CH3 substi-
tuent deviate from the fitted line. The deletion of these substitu-
ents improves the correlation significantly from 0.82 to 0.99.
The effect of substituent on the carbonyl vibrational frequency
was found to be consistent with the previously discussed carbonyl
bond distance, where the electron donating group increase the car-
bonyl group bond distance causing a decrease of its bond strength
and consequently it vibrates at lower frequency or wave number.
This effect is more pronounced for the strong donating 4-OCH3
group. While the electron withdrawing groups lead to shortening
and strengthening of the carbonyl group which explain its vibra-
tion at higher frequency. This observation is due to the resonance
between the substituent and the carbonyl carbon which is sup-
ported from the good linear relationship between the frequency
Supplementary data associated with this article can be found, in
References
[1] R.A.Y. Jones, Physical and Mechanistic Organic Chemistry, Cambridge
University Press, Cambridge, 1979.
[2] G.K. McEvoy (Ed.), AHFS Drug Information, the American Society of Health-
System Pharmacists, Inc., 1999.
[3] X. Liu, B.C. Lynn, J. Zhang, L. Song, D. Bom, W. Du, D.P. Curran, T.G. Burke, J. Am.
Chem. Soc. 124 (2002) 7650.
[4] H. Matsumoto, Y. Sohma, D. Shuto, T. Hamawaki, T. Kimura, Y. Hayashi, Y. Kiso,
Pept. Sci. (2000) 237.
[5] M.F. Bone, A.H. Price, M.G. Clark, D.G. McDonnel, Liq. Cryst. Ordered Fluids 4
(1982) 799.
[6] J.F. Kirsch, W. Clewell, A. Simon, J. Org. Chem. 33 (1968) 127.
[7] A. Kirkien-Konasiewicz, A. Maccoll, J. Chem. Soc. (1964) 1267.
[8] G. Guanti, C. Dell’Erba, F. Pero, Chem. Commun. 55 (1975) 823.
[9] G. Guanti, C. Dell’Erba, F. Pero, G. Leandri, J. Chem. Soc. Perkin II (1977) 966.
[10] H. Feuer, S. Patai (Eds.), The Chemistry of the Nitro and Nitroso Groups, Wiley-
Interscience, New York, 1969.
[11] E. Buncel, C. Chuaqui, P. Forsythe, S. Mahoney, A. Raoult, J.F. Willtshir, J. Chem.
Soc. Perkin II (1975) 478.
[12] (a) A.J. Kirby, W.P. Jencks, J. Am. Chem. Soc. 87 (1965) 3209;
(b) S.J. Benkovic, P.A. Benkovic, J. Am. Chem. Soc. 88 (1966) 5504.
[13] (a) A.J. Kirby, in: C.H. Bamford, C.F.H. Tipper (Eds.), Comprehensive Chemical
Kinetics, vol. 10, Elsevier, Amsterdam, 1972;
(b) M.L. Bender, Mechanisms of Homogeneous Catalysis from Protons to
Proteins, Wiley-Interscience, New York, 1971.
[14] A. Kirkien-konasiewicz, G. Sammy, A. Maccoll, Nature 203 (1964) 637.
[15] R. Wrzalik, K. Merkel, A. Kocot, J. Mol. Model 9 (2003) 248.
[16] T. Imase, S. Kawauchiand, J. Watanabe, J. Mol. Struct. 560 (2001) 275.
[17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich,
J.M. Millam, A.D. Daniels, K.N. Kudin, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, Q. Cui,
K. Morokuma, D.K. Malick, A.D. Rabuck, J.B. Foresman, J. Cioslowski, J.V. Ortiz,
A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.
Gomperts, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. anayakkara, M.
Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C.
Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Gaussian Inc,
Pittsburgh, PA, 1998.
of C@O and (r
+) of substituents Fig. 10. However, the effect of
[18] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[19] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1998) 785.
[20] P.C. Hariharan, J.A. Pople, Chem. Phys. Lett. 16 (1972) 217.
[21] D. Jacquemin, E.A. Perpète, I. Ciofini, C. Adamo, Acc. Chem. Res. 42 (2009) 326.
[22] M. Sßenyel, Ö. Alver, C. Parlak, Spectrochim. Acta Part A 71 (2008) 830.
[23] C. Parlak, Ö. Alver, M. Sßenyel, Spectrochim. Acta. Part A 69 (2008) 1252.
[24] A. Bagno, F. Rastrelli, G. Saielli, Chem. Eur. J. 12 (2006) 5514.
[25] P. Politzer, J.S. Murray, K.D. Sen (Eds.), Molecular Electrostatic Potentials,
Concepts and Applications, Elsevier, Amsterdam, 1996.
varying substituent on the vibrational frequency of the NO2 groups
is negligible, Table 5.
9. NMR spectra
[26] J.J. Nie, D.J. Xu, Chin. Struct. J. Chem. 21 (2002) 165.
[27] G. Klopman, J. Am. Chem. Soc. 90 (1968) 223.
[28] C. Amovilli, V. Barone, R. Cammi, E. Cancès, M. Cossi, B. Mennucci, C.S. Pomelli,
J. Tomasi, Adv. Quantum Chem. 32 (1998) 227.
[29] M. Cossi, V. Barone, J. Chem. Phys. 115 (2001) 4708.
[30] E.G. Lewars, Computational Chemistry, Introduction to the Theory and
Applications of Molecular and Quantum Mechanics, Kluwer, 2003.
[31] H.T. Varghese, C.Y. Panicker, D. Philip, J.R. Mannekutla, S.R. Inamdar,
Spectrochim. Acta Part A 66 (2007) 959.
Experimental and calculated chemical shift for all protons of es-
ters 3a–g are listed in Table 6. In comparing the experimental and
theoretical result for the hydrogen chemical shifts, the correlation
values are found 0.996, 0.995, 0.947, 0.995, 0.960, 0.956, 0.80 for
X = H, 4-OMe, 4-Me, 3-Me, 4-Cl, 3-Cl, 4-NO2, respectively. It can
be seen that B3LYP findings are in good agreement with all the
experimental results.