ORGANIC
LETTERS
2003
Vol. 5, No. 15
2687-2690
Ru-Catalyzed Hydroamidation of Alkenes
and Cooperative Aminocarboxylation
Procedure with Chelating Formamide
Sangwon Ko, Hoon Han, and Sukbok Chang*
Center for Molecular Design and Synthesis (CMDS), Department of Chemistry and
School of Molecular Science (BK21), Korea AdVanced Institute of Science and
Technology (KAIST), Daejeon 305-701, Korea
Received May 18, 2003
ABSTRACT
A strategy of chelation-assisted activation of formamide was employed to achieve hydroamidation of alkenes to generate one-carbon-elongated
amides in moderate to good selectivity and yields. Also reported is the two-metal-catalyzed cooperative aminocarboxylation of aryl iodides,
in which Ru is presumed to catalyze decarbonylation of formamide to release carbon monoxide and amine for the subsequent Pd-catalyzed
aminocarboxylation routes, thus enabling the net transformation to be performed in the absence of external CO pressure.
Metal-catalyzed C-H bond activation and subsequent ad-
dition of the activated species to unsaturated compounds
constitute one of the most economical and efficient methods
in organic synthesis.1 Among them, the method for insertion
of alkene or alkyne into the activated C-H bond of aldehyde,
resulting in the corresponding ketone moiety, is considered
highly useful.2 However, the use of hydroacylation in organic
synthesis is rather limited mainly due to facile decarbony-
lation of the activated hydroacyl intermediate under the
normally used conditions.3 Chelation strategy has been
elegantly utilized in transition metal-catalyzed organic
transformations to direct reaction pathways by virtue of
forming tight transition states.4 During the course of studies
on transition metal catalysis,5 we have recently demonstrated
that the chelation strategy could be employed to effectively
activate pyridyl group-containing formates to achieve ef-
ficient hydroesterification of alkenes.6 In this protocol, the
pyridyl moiety of formats serves as a directing group and
facilitates the formation of chelating species, thus effectively
suppressing decarbonylation of ruthenium acyl hydride
intermediates. It is surprising that whereas hydroesterification
(1) For recent examples of catalytic C-H bond activation, see: (a)
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem.
Res. 1995, 28, 154. (b) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997,
97, 2879. (c) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (d) Jia, C.;
Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (e) Kakiuchi,
F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (f) Ritleng, V.; Sirlin, C.;
Pfeffer, M. Chem. ReV. 2002, 102, 1731.
(2) For selected examples of metal-catalyzed hydroacylation, see: (a)
Lochow, C. F.; Miller, R. G. J. Am. Chem. Soc. 1976, 98, 1281. (b) Marder,
T. B.; Roe, D. C.; Milstein, D. Organometallics 1988, 7, 1451. (c) Bosnich,
B. Acc. Chem. Res. 1998, 31, 667. (d) Tanaka, K.; Fu, G. C. J. Am. Chem.
Soc. 2001, 123, 11492. (e) Jun, C.-H.; Lee, H.; Hong, J.-B.; Kwon, B.-I.
Angew. Chem., Int. Ed. 2002, 41, 2146. (f) Sato, Y.; Oonishi, Y.; Mori, M.
Angew. Chem., Int. Ed. 2002, 41, 1218.
(4) For some selected recent examples, see: (a) Murai, S.; Kakiuchi, F.;
Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993,
366, 529. (b) Gozin, M.; Weisman, A.; Ben-David, Y.; Milstein, D. Nature
1993, 364, 699. (c) Jun, C.-H.; Lee, H. J. Am. Chem. Soc. 1999, 121, 880.
(d) Itami, K.; Koike, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2001, 123, 6957
and references therein.
(5) (a) Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887. (b) Lee, M.; Chang,
S. Tetrahedron Lett. 2000, 41, 7507. (c) Lee, M.; Ko, S.; Chang, S. J. Am.
Chem. Soc. 2000, 122, 12011. (d) Chang, S.; Na, Y.; Choi, E.; Kim, S.
Org. Lett. 2001, 3, 2089. (e) Chang, S.; Yang, S. H.; Lee, P. H. Tetrahedron
Lett. 2001, 42, 4833. (f) Choi, E.; Lee, C.; Na, Y.; Chang, S. Org. Lett.
2002, 4, 2369.
(6) (a) Ko, S.; Na, Y.; Chang, S. J. Am. Chem. Soc. 2002, 124, 750. (b)
Ko, S.; Lee, C.; Choi, M.; Na, Y.; Chang, S. J. Org. Chem. 2003, 68, 1607.
(c) Na, Y.; Ko, S.; Hwang, L. K.; Chang, S. Tetrahedron Lett. 2003, 44,
4475.
(3) Bates, R. W. In ComprehensiVe Organometallic Chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, UK, 1995;
Vol. 12, pp 373-378.
10.1021/ol034862r CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/25/2003