Communication
ChemComm
(212101510004), the Program for Science & Technology Innova-
tion Talents in Universities of Henan Province (19HASTIT036)
and the 111 Project (No. D17007). We also thank the financial
support from Henan Key Laboratory of Organic Functional
Molecules and Drug Innovation.
Conflicts of interest
There are no conflicts to declare.
Notes and references
Fig. 2 Proposed mechanism.
1 (a) A. Padwa and A. T. Price, J. Org. Chem., 1995, 60, 6258;
(b) E. L. Campbell, A. M. Zuhl, C. M. Liu and D. L. Boger, J. Am.
Chem. Soc., 2010, 132, 3009; (c) D. Kato, Y. Sasaki and D. L. Boger,
J. Am. Chem. Soc., 2010, 132, 3685; (d) Y. Sasaki, D. Kato and
D. L. Boger, J. Am. Chem. Soc., 2010, 132, 13533; (e) J.-L. Zhou,
Y. Liang, C. Deng, H. L. Zhou, Z. Wang, X.-L. Sun, J.-C. Zheng,
Z.-X. Yu and Y. Tang, Angew. Chem., Int. Ed., 2011, 50, 7874;
( f ) G. J. Mei, H. Yuan, Y. Q. Gu, W. Chen, L. W. Chung and
C.-C. Li, Angew. Chem., Int. Ed., 2014, 53, 11051; (g) Y.
Xia, X. H. Liu and X. M. Feng, Angew. Chem., Int. Ed., 2020, DOI:
10.1002/anie.202006736.
Scheme 5 Catalytic asymmetric ring-opening reaction.
2 Selected examples with CQC/CRC: (a) J. M. Zhang, Z. L. Chen,
H.-H. Wu and J. L. Zhang, Chem. Commun., 2012, 48, 1817;
(b) W. L. Chen, X. Fu, L. L. Lin, X. Yuan, W. W. Luo, J. H. Feng,
X. H. Liu and X. M. Feng, Chem. Commun., 2014, 50, 11480;
(c) W. L. Chen, Y. Xia, L. L. Lin, X. Yuan, S. S. Guo, X. H. Liu and
X. M. Feng, Chem. – Eur. J., 2015, 21, 15104; (d) B. Wang, M. Liang,
J. Tang, Y. Deng, J. H. Zhao, H. Sun, C.-H. Tung, J. Jia and Z. H. Xu,
Org. Lett., 2016, 18, 4614; (e) X. Yuan, L. L. Lin, W. L. Chen,
W. B. Wu, X. H. Liu and X. M. Feng, J. Org. Chem., 2016, 81, 1237;
indicated that the coordination of 2a and Y(OTf)3 might be
involved in the rate-determining step.
On the basis of our experimental results and previous
reports, a possible mechanism was proposed in Fig. 2. First,
D–A oxirane 2 is activated by Y(OTf)3 via coordination with the
geminal bisketone moiety to form the intermediate A. Then, the
direct C–C bond cleavage of intermediate A will generate a
zwitterion, in which a carbocation at the benzyl position was
involved. After that, a metal-coordinated carbonyl ylide B was
formed. Finally, the nucleophilic attack of N-heteroaromatics to
carbonyl ylide B generated the desired ring-opening adducts
and released Y(OTf)3.
Furthermore, the enantioselective variant of this ring-
opening reaction was tried (Scheme 5). A series of Lewis acids
and chiral oxazoline ligands were screened (see ESI† for
details). With Y(OTf)3-L1 as the catalyst, the ring-opening
adducts were obtained in 68% total yield, along with 2% ee
for N1 alkylated product 3a.
In summary, we reported the first ring-opening of D–A
oxiranes with N-heteroaromatics in a chemoselective C–C bond
cleavage manner. With 5 mol% of Y(OTf)3 as the catalyst, a
variety of N-heteroaromatics, including benzotriazoles, pur-
ines, substituted benzimidazole, imidazole and pyrazole,
reacted well with diverse D–A oxiranes, providing ring-
opening adducts containing a N-glycosidic bond in 40–97%
yields and 79 : 21 to 495 : 5 regioselectivities. Furthermore,
diverse acyclic nucleoside analogues could be afforded from
the ring-opening adducts through simple derivatization. This
methodology may provide a practical route to construct acyclic
nucleosides and Ganciclovir analogues.
´
( f ) S. Hamza-Reguig, G. Bentabed-Ababsa, L. R. Domingo, M. Rıos-
´
Gutierrez, S. Philippot, S. Fontanay, R. E. Duval, S. Ruchaud,
S. Bach, T. Roisnel and F. Mongin, J. Mol. Struct., 2018, 1157, 276.
3 Selected examples with CQO: (a) G. Bentabed, M. Rahmouni,
F. Mongin, A. Derdour, J. Hamelin and J. P. Bazureau,
Synth. Commun., 2007, 37, 2935; (b) Z. L. Chen, L. Wei and
J. L. Zhang, Org. Lett., 2011, 13, 1170; (c) Z. L. Chen, Z. Q. Tian,
J. M. Zhang, J. Ma and J. L. Zhang, Chem. – Eur. J., 2012, 18, 8591;
(d) Z. L. Chen, Y. J. Xiao and J. L. Zhang, Eur. J. Org. Chem., 2013,
4748; (e) Z. Q. Tian, Y. J. Xiao, X. G. Yuan, Z. L. Chen, J. L. Zhang and
J. Ma, Organometallics, 2014, 33, 1715; ( f ) W. L. Chen, L. L. Lin,
Y. F. Cai, Y. Xia, W. D. Cao, X. H. Liu and X. M. Feng,
Chem. Commun., 2014, 50, 2161.
4 Selected examples with CQN/CRN: (a) C. Ebner, C. A. Muller,
C. Markert and A. Pfaltz, J. Am. Chem. Soc., 2011, 133, 4710;
(b) M. Sengoden and T. Punniyamurthy, RSC Adv., 2012, 2, 2736;
(c) J. Q. Zhang, Y. J. Xiao and J. L. Zhang, Adv. Synth. Catal., 2013,
355, 2793; (d) H. Zhou, X. F. Zeng, L. Y. Ding, Y. Xie and G. F. Zhong,
Org. Lett., 2015, 17, 2385; (e) H. Zhou, X. F. Zeng, Y. Xie and
G. F. Zhong, Synlett, 2015, 1693; ( f ) S.-S. Zhang, D.-C. Wang,
G.-R. Qu and H.-M. Guo, Org. Lett., 2018, 20, 8026; (g) M. Alajarin,
˜
´
D. Banon, A. Egea, M. Marın-Luna, R.-A. Orenes and A. Vidal,
Org. Chem. Front., 2018, 5, 2020.
5 Selected examples with CQS: (a) K.-R. Meier, A. Linden, G. Mlosten
and H. Heimgartenr, Helv. Chim. Acta, 1997, 80, 1190; (b) D. H. Zhao,
S. S. Guo, X. Guo, G. L. Zhang and X. P. Yu, Tetrahedron, 2016,
72, 5285; (c) J. Wang, Q.-Y. Zhang, M.-S. Xie, D.-C. Wang, G.-R. Qu
and H.-M. Guo, Org. Lett., 2018, 20, 6578.
6 K. Mondal and S. C. Pan, J. Org. Chem., 2017, 82, 4415.
7 (a) K. M. Dawood, H. Abdel-Gawad, E. A. Rageb, M. Ellithey and
H. A. Mohamed, Bioorg. Med. Chem., 2006, 14, 3672; (b) M.-S. Xie,
H.-Y. Niu, G.-R. Qu and H.-M. Guo, Tetrahedron Lett., 2014, 55, 7156.
8 P. Coghi, N. Vaiana, M. G. Pezzano, L. Rizzi, M. Kaiser, R. Brun and
S. Romeo, Bioorg. Med. Chem. Lett., 2008, 18, 4658.
We are grateful for the financial support from NSFC (No.
22071046 and 21778014), the National Government Guides
Local Special Funds for the Development of Science and
9 H. Gao and A. K. Mitra, Synthesis, 2000, 329.
10 K. Xu, N. Thieme and B. Breit, Angew. Chem., Int. Ed., 2014,
126, 7896.
Technology (No. YDZX20204100001786), Zhongyuan Scholar 11 A. Russo and A. Lattanzi, Org. Biomol. Chem., 2010, 8, 2633.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 4552–4555 | 4555