Organic Letters
Letter
also technically a cyclopropanol derivative, and its direct
equilibration to a metal-homoenolate species is a reasonable
consideration. However, different observations led us to discard
this hypothesis, including the fact that the reaction was shown to
be productive with Ni(cod)2 in the absence of zinc salts (see
Table 1, entry 1), which are conditions unlikely to generate
metal-homoenolates.3 Moreover, the observed regioselectivity
of the transformation is inconsistent with such a mechanism, as
it was previously shown that metal-homoenolates typically react
with alkynes such as 3a with opposite selectivity,24 generating a
more stable 1-arylalkenyl-metal intermediate following carbo-
metalation.25
In summary, we describe the first formal [3 + 2] cycloaddition
of cyclopropanone and alkynes, providing access to 2,3-
disubstituted cyclopentenones with complete regiocontrol,
favoring products with reverse Pauson−Khand selectivity.26
To the best of our knowledge, this work constitutes the only
example of a Ni-catalyzed C−C activation of cyclopropanone,
where the use of 1-sulfonylcyclopropanols as well-behaved
cyclopropanone precursors was found to be essential to achieve
the desired reactivity. A key trimethylaluminum additive is
thought to play multiple roles in the process, including as a
Brønsted base triggering the equilibration to cyclopropanone as
well as a source of Lewis acid to activate the cyclopropanone
toward Ni-catalyzed C−C activation via oxidative cyclization
and β-carbon elimination. Considering the relevance of
transition-metal-catalyzed C−C activation in the elaboration
of complex scaffolds1 and the ubiquity of substituted cyclo-
pentenones in organic synthesis,19 this work should find broad
utility in the construction of biologically relevant molecules.
to NC State University for a Burroughs Wellcome Fellowship in
Organic Chemistry.
REFERENCES
■
(1) For reviews on the C−C activation of strained ring systems, see:
(a) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410−9464.
(b) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117,
9404−9432. (c) Chen, P. H.; Billett, B. A.; Tsukamoto, T.; Dong, G.
ACS Catal. 2017, 7, 1340−1360. (d) Ruhland, K. Eur. J. Org. Chem.
2012, 2012, 2683−2706. (e) Murakami, M.; Matsuda, T. Chem.
Commun. 2011, 47, 1100−1105. (f) Wang, B.; Perea, M. A.; Sarpong, R.
Angew. Chem., Int. Ed. 2020, 59, 18898−18919. (g) Murakami, M.;
(h) Deng, L.; Dong, G. Trends Chem. 2020, 2, 183−198.
(2) (a) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2006, 128, 4598−
4611. (b) Dudev, T.; Lim, C. J. Am. Chem. Soc. 1998, 120, 4450−4458.
(c) Liebman, J. F.; Greenberg, A. Chem. Rev. 1976, 76, 311−365.
(d) Liebman, J. F.; Greenberg, A. Chem. Rev. 1989, 89, 1225−1246.
(3) For recent reviews on the chemistry of metal−homoenolates, see:
(a) Mills, L. R.; Rousseaux, S. A. L. Eur. J. Org. Chem. 2019, 2019, 8−26.
(b) Nikolaev, A.; Orellana, A. Synthesis 2016, 48, 1741−1768. (c) Rosa,
D.; Nikolaev, A.; Nithiy, N.; Orellana, A. Synlett 2015, 26, 441−448.
(d) Nithiy, N.; Rosa, D.; Orellana, A. Synthesis 2013, 45, 3199−3210.
(e) Kuwajima, I.; Nakamura, E. Small Ring Compounds in Organic
Synthesis IV; Springer: Berlin, 1990; Vol. 155, pp 1−39.
(4) For selected recent examples using cyclobutanols and analogous
derivatives as substrates, see: (a) Seiser, T.; Roth, O. A.; Cramer, N.
Angew. Chem., Int. Ed. 2009, 48, 6320−6323. (b) Seiser, T.; Cramer, N.
Chem. - Eur. J. 2010, 16, 3383−3391. (c) Cramer, N.; Seiser, T. Synlett
2011, 2011, 449−460. (d) Masarwa, A.; Weber, M.; Sarpong, R. J. Am.
Chem. Soc. 2015, 137, 6327−6334. (e) Ham, J. S.; Park, B.; Son, M.;
Roque, J. B.; Jurczyk, J.; Yeung, C. S.; Baik, M.-H.; Sarpong, R. J. Am.
Chem. Soc. 2020, 142, 13041−13050.
(5) (a) Baldwin, J. E. Chem. Rev. 2003, 103, 1197−1212. (b) Wang, S.
C.; Tantillo, D. J. J. Organomet. Chem. 2006, 691, 4386−4392.
(c) Meazza, M.; Guo, H.; Rios, R. Org. Biomol. Chem. 2017, 15, 2479−
2490.
(6) Masarwa, A.; Marek, I. Chem. - Eur. J. 2010, 16, 9712−9721.
(7) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107,
3117−3179.
(8) (a) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem., Int.
Ed. 2011, 50, 7740−7752. (b) Namyslo, J. C.; Kaufmann, D. E. Chem.
Rev. 2003, 103, 1485−1538. (c) Sadana, A. K.; Saini, R. K.; Billups, W.
E. Chem. Rev. 2003, 103, 1539−1602.
(9) (a) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005,
127, 6932−6933. For related reactions with other π-systems, see:
(b) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128,
2166−2167. (c) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc.
2002, 124, 13976−13977. (d) Murakami, M.; Ashida, S. Chem.
Commun. 2006, 4599−4601. (e) Liu, L.; Ishida, N.; Murakami, M.
Angew. Chem., Int. Ed. 2012, 51, 2485−2488. (f) Ho, K. Y. T.; Aïssa, C.
Chem. - Eur. J. 2012, 18, 3486−3489.
(10) (a) Deng, L.; Jin, L.; Dong, G. Angew. Chem., Int. Ed. 2018, 57,
2702−2706. For related reactions with other π-systems, see: (b) Ko, H.
M.; Dong, G. Nat. Chem. 2014, 6, 739−744. (c) Zhou, X.; Ko, H. M.;
Dong, G. Angew. Chem., Int. Ed. 2016, 55, 13867−13871. (d) Zhou, X.;
Dong, G. Angew. Chem., Int. Ed. 2016, 55, 15091−15095. (e) Xu, T.;
Dong, G. Angew. Chem., Int. Ed. 2012, 51, 7567−7571. (f) Xu, T.; Ko,
H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005−
20008. (g) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 10733−
10736. (h) Deng, L.; Chen, M.; Dong, G. J. Am. Chem. Soc. 2018, 140,
9652−9658. (i) Zhou, X.; Dong, G. J. Am. Chem. Soc. 2015, 137,
13715−13721.
(11) For reviews on the synthesis and applications of cyclopropanone
derivatives, see: (a) Turro, N. J. Acc. Chem. Res. 1969, 2, 25−32.
(b) Wasserman, H. H.; Clark, G. M.; Turley, P. C. Stereochemistry I;
Springer: Berlin, 1974; Vol. 47, pp 73−156. (c) Wasserman, H. H.;
Berdahl, D. R.; Lu, T.-J. In The Chemistry of the Cyclopropyl Group;
Rappoport, Z., Ed.; Wiley: Chichester, UK, 1987; pp 1455−1532.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
sı
Experimental details and spectroscopic data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Vincent N. G. Lindsay − Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695,
Author
Yujin Jang − Department of Chemistry, North Carolina State
University, Raleigh, North Carolina 27695, United States
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by North Carolina State University
startup funds. All Nuclear Magnetic Resonance (NMR) and
High Resolution Mass Spectrometry (HRMS) measurements
were performed by the Molecular Education, Technology, and
Research Innovation Center (METRIC) at NC State University,
which is supported by the State of North Carolina. Y.J. is grateful
D
Org. Lett. XXXX, XXX, XXX−XXX