Tota l Syn th esis of (()-Ka in ic Acid w ith a n Aza -[2,3]-Wittig
Sigm a tr op ic Rea r r a n gem en t a s th e Key Ster eoch em ica l
Deter m in in g Step
J ames C. Anderson* and Matthew Whiting
School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
j.anderson@nottingham.ac.uk
Received March 18, 2003
A flexible route to the kainoid skeleton is exemplified by the synthesis of (()-kainic acid from
3-butyn-1-ol. The route relies on the aza-[2,3]-Wittig sigmatropic rearrangement to efficiently install
the relative stereochemistry between C2-C3. The C4 stereocenter was derived from a diastereo-
controlled iodolactonization. The aza-[2,3]-Wittig rearrangement potentially allows structural
diversity at C3 and the displacement of the tosyloxy group with retention of stereochemistry allows
structural diversity at C4. The trans-C2 carboxylic acid functional group was found to be the most
important for retention of stereochemistry at C4 upon treatment with a higher order cyano cuprate
reagent.
In tr od u ction
related members of the kainic acid family. To the best of
our knowledge kainic acid itself has not been synthesized
by this route. In this paper we show the use of the aza-
[2,3]-Wittig rearrangement in deriving the initial stere-
ochemistry needed for the stereocontrolled synthesis of
an advanced tosyloxy intermediate 5 (Scheme 1) and its
conversion to (()-kainic acid.
The stereochemical determination step would be de-
rived from aza-[2,3]-Wittig rearrangement of achiral 2,
giving the desired trans stereochemistry according to our
transition state model and previous work.8 By analogy
The kainoid amino acids are a group of nonproteino-
genic pyrrolidine dicarboxylic acids of which (-)-kainic
acid (1) is the parent member. The kainoids exhibit a
wide variety of biological properties and have been used
as insecticides, anthelmintic (anti-intestinal worm) agents,
and most prominently neuroexcitatory agents. Their
potent neuroexcitatory activity, which leads to specific
neuronal death in the brain, is attributed to their action
as conformationally restricted analogues of the neu-
rotransmitter glutamic acid. The nature and stereochem-
istry of the unsaturated C4 substituent plays a crucial
role in binding and functional activation at the active
site.1 Interest in the development of these types of
molecules as neuroprotective therapeutics2 and pesti-
cides3 demands new, flexible methods for their synthesis.
There is also great interest in the synthesis of kainic acid
derivatives as some have been shown to be more potent
than the natural molecules themselves.4 There have been
numerous asymmetric5 and racemic6 syntheses of kainic
acid over the past 20 years. However, very few of these
allow the convergent synthesis of a wide range of differ-
ent kainoids through a late-stage common intermediate.
The introduction of C4 substituents by displacement of
trans-4-tosyloxy-L-prolines, with retention of stereochem-
istry, has been reported.7 This strategy was applied to
the synthesis of C4 acromelic acid congeners,4 which are
(5) (a) Oppolzer, W.; Thirring, K. J . Am. Chem. Soc. 1982, 104, 4978.
(b) Cooper, J .; Knight, D. W.; Gallagher, P. T. J . Chem. Soc., Chem.
Commun. 1987, 1220. (c) Cooper, J .; Knight, D. W.; Gallagher, P. T.
J . Chem. Soc., Perkin Trans. 1 1992, 553. (d) Baldwin, J . E.; Li, C.-S.
J . Chem. Soc., Chem. Commun. 1987, 166. (e) Baldwin, J . E.; Moloney,
M. G.; Parsons, A. F. Tetrahedron 1990, 46, 7263. (f) Takano, S.;
Iwabuchi, Y.; Ogasawara, K. J . Chem. Soc., Chem. Commun. 1988,
1204. (g) Takano, S.; Sugihara, T.; Satoh, S.; Ogasawara, K. J . Am.
Chem. Soc. 1988, 110, 6467. (h) J eong, N.; Yoo, S.-E.; Lee, S. J .; Lee,
S. H.; Chung, Y. K. Tetrahedron Lett. 1991, 32, 2137. (i) Yoo, S.-E.;
Lee, S.-H.; J eong, N.; Cho, I. Tetrahedron Lett. 1993, 34, 3435. (j) Yoo,
S.-E.; Lee, S.-H. J . Org. Chem. 1994, 59, 6968. (k) Takano, S.; Inomata,
K.; Ogasawara, K. J . Chem. Soc., Chem. Commun. 1992, 169. (l) Barco,
A.; Benetti, S.; Pollini, G. P.; Spalluto, G.; Zanirato, V. J . Chem. Soc.,
Chem. Commun. 1991, 390. (m) Hatakeyama, S.; Sugawara, K.;
Takano, S. J . Chem. Soc., Chem. Commun. 1993, 125. (n) Hanessian,
S.; Ninkovic, S. J . Org. Chem. 1996, 61, 5418. (o) Nakada, Y.; Sugahara,
T.; Ogasawara, K. Tetrahedron Lett. 1997, 38, 857. (p) Bachi, M. D.;
Melman, A. J . Org. Chem. 1997, 62, 1896. (q) Miyata, O.; Ozawa, Y.;
Ninomiya, I.; Naito, T. Synlett 1997, 275. (r) Rubio, A.; Ezquerra, J .;
Escribano, A.; Remuin˜a´n, M. J .; Vaquero, J . J . Tetrahedron Lett. 1998,
39, 2171. (s) Cossy, J .; Cases, M.; Pardo, D. G. Tetrahedron 1999, 55,
6153. (t) Campbell, A. D.; Raynham, T. M.; Taylor, R. J . K. Chem.
Commun. 1999, 245. (u) Kakagawa, H.; Sugahara, T.; Ogasawara, K.
Org. Lett. 2000, 2, 3181. (v) Campbell, A. D.; Raynham, T. M.; Taylor,
R. J . K. J . Chem. Soc., Perkin Trans. 1 2000, 3194. (w) Miyata, O.;
Ozawa, Y.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 6199. (x) Xia,
Q.; Ganem, B. Org. Lett. 2001, 3, 485. (y) Clayden, J .; Menet, C. J .;
Tchabanenko, K. Tetrahedron 2002, 58, 4727.
(1) (a) Husinec, S.; Porter, A. E. A.; Roberts, J . S.; Strachan, C. H.
J . Chem. Soc., Perkin Trans.
1 1984, 2517. (b) Hansen, J . J .;
Krogsgaard-Larsen, P. Med. Res. Rev. 1990, 10, 55. (c) Hashimoto, K.;
Horikawa, M.; Ishida, M.; Shinozaki, H.; Shirakama, H. Bioorg. Med.
Chem. Lett. 1992, 2, 743. (d) Horikawa, M.; Shirakama, H. Synlett
1996, 95.
(2) Hansen, J . J .; Krogsgaard-Larsen, P. Med. Res. Rev. 1990, 10,
55.
(3) Maeda, M.; Kodama, T.; Saito, M.; Tanaka, T.; Yoshizumi, H.;
Nomoto, K.; Fujita, T. Pestic. Biochem. Physiol. 1987, 28, 85.
(4) Hashimoto, K.; Shirahama, H. Tetrahedron Lett. 1991, 32, 2625.
(6) (a) Monn, J . A.; Valli, M. J . J . Org. Chem. 1994, 59, 2773. (b)
Yoo, S.-E.; Lee, S.-H.; Yo, K.-Y.; J eong, N. Tetrahedron Lett. 1990, 31,
6877. (c) Clayden, J .; Tchabanenko, K. Chem. Commun. 2000, 317.
(7) Thottathil, J . K.; Moniot, J . L. Tetrahedron Lett. 1986, 27, 151.
10.1021/jo030101q CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/27/2003
6160
J . Org. Chem. 2003, 68, 6160-6163