Brief Articles
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 13 4061
Bose, A. K.; Mathur, C.; Wagle, D. R.; Naqvi, R.; Manhas, M. S.
Studies on lactams. 95. Chiral ꢀ-lactams as synthons. Stereospecific
synthesis of a 6-epi-lincosamine derivative. Heterocycles 1994, 39,
491–496. (e) Watanabe, N.; Anada, M.; Hashimoto, S.-i.; Ikegami, S.
Enantioselective intramolecular C-H insertion reactions of N-alkyl-
N-tert-butyl-R-methoxycarbonyl-R-diazoacetamides catalyzed by dirhod-
ium(II) carboxylates: catalytic, asymmetric construction of 2-azetid-
inones. Synlett 1994, 103, 1–1033. (f) Baldwin, J. E.; Adlington, R. M.;
Crouch, N. P.; Mellor, L. C.; Morgan, N.; Smith, A. M.; Sutherland,
J. D. Synthesis of (2R,3S)[4-2H3] valine: application to the study of
the ring expansion of penicillin N by deacetoxycephalosporin C
synthase from Streptomyces claVuligerus. Tetrahedron 1995, 51, 4089–
4100. (g) Alcaide, B.; Aly, M. F.; Sierra, M. A. The unusual Baeyer-
Villiger rearrangement of ꢀ-lactam aldehydes: totally stereoselective
entry to cis-3-substituted 4-formyloxy-2-azetidinones. Tetrahedron
Lett. 1995, 36, 3401–3404. (h) Lee, H. K.; Chun, J. S.; Pak, C. S.
Facile transformation of 3,4-disubstituted 2-azetidinones to chiral 5,6-
dihydro-2-pyridones. Tetrahedron Lett. 2001, 42, 3483–3486. (i) Lee,
H. K.; Chun, J. S.; Pak, C. S. Facile Transformation of 2-Azetidinones
to 2-Piperidones: Application to the Synthesis of the Indolizidine
Skeleton and (8S,8aS)-Perhydro-8-indolizinol. J. Org. Chem. 2003,
68, 2471–2474. (j) Lee, H. K.; Chun, J. S.; Pak, C. S. Facile conversion
of 2-azetidinones to 2-piperidones: application to a formal synthesis
of Prosopis and Cassia alkaloids. Tetrahedron 2003, 59, 6445–6454.
(k) Birch, N. J.; Parsons, P. J.; Scopes, D. I. C. A convenient route to
imino sugars and analogues of siastatin B. Synlett 2004, 277, 6–2778.
(l) Kvrno, L.; Werder, M.; Hauser, H.; Carreira, E. M. Synthesis and
in Vitro Evaluation of Inhibitors of Intestinal Cholesterol Absorption.
J. Med. Chem. 2005, 48, 6035–6053. (m) Huguenot, F.; Brigaud, T.
Convenient Asymmetric Synthesis of ꢀ-Trifluoromethyl-ꢀ-amino Acid,
ꢀ-Amino Ketones, and γ-Amino Alcohols via Reformatsky and
Mannich-Type Reactions from 2-Trifluoromethyl-1,3-oxazolidines. J.
Org. Chem. 2006, 71, 2159–2162. (n) Del Buttero, P.; Molteni, G.;
Roncoroni, M. Reductive ring opening of 2-azetidinones promoted
by sodium borohydride. Tetrahedron Lett. 2006, 47, 2209–2211. (o)
Mishra, R. K.; Coates, C. M.; Revell, K. D.; Turos, E. Synthesis of
2-Oxazolidinones from ꢀ-Lactams: Stereospecific Total Synthesis of
(-)-Cytoxazone and All of Its Stereoisomers. Org. Lett. 2007, 9, 575–
578. (p) Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P.
Stereocontrolled Access to Orthogonally Protected anti,anti-4-Ami-
nopiperidine-3,5-diols through Chemoselective Reduction of Enan-
tiopure ꢀ-Lactam Cyanohydrins. J. Org. Chem. 2007, 72, 7980–7991.
(q) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Chiral
N-Heterocyclic Carbene Catalyzed Staudinger Reaction of Ketenes
with Imines: Highly Enantioselective Synthesis of N-Boc ꢀ-Lactams.
Org. Lett. 2008, 10, 277–280. (r) D’hooghe, M.; Dekeukeleire, S.;
De Kimpe, N. Reactivity of N-(ω-haloalkyl)-ꢀ-lactams with regard
to lithium aluminium hydride: novel synthesis of 1-(1-aryl-3-hydrox-
ypropyl)aziridines and 3-aryl-3-(N-propylamino)propan-1-ols. Org.
Biomol. Chem. 2008, 6, 1190–1196. (s) Taubinger, A. A.; Fenske,
D.; Podlech, J. Synthesis of ꢀ,ꢀ′-diamino acids from R-amino acid
derived ꢀ-lactams. Synlett 2008, 539–542. (t) Sakaguchi, H.; Tokuya-
ma, H.; Fukuyama, T. Total synthesis of (-)-kainic acid via intramo-
lecular Michael addition: a second-generation route. Org. Lett. 2008,
10, 1711–1714.
Synthesis of syn-2-Benzyloxy-3-(N-isobutyl-N-methylamino)-
3-(4-methylphenyl)propan-1-ol (5). To an ice-cooled solution of
5-benzyloxy-3-isobutyl-4-(4-methylphenyl)-1,3-oxazinane 4b (5
mmol) in methanol (20 mL) was added sodium borohydride (10
mmol), after which the resulting suspension was heated under reflux
for 3 h. Afterward, the reaction mixture was poured into water (25
mL), extracted with dichloromethane (3 × 20 mL), and dried
(MgSO4). Filtration of the drying agent and removal of the solvent
yielded the crude syn-2-benzyloxy-3-(N-isobutyl-N-methylamino)-
3-(4-methylphenyl)propan-1-ol 5, which was purified by means of
column chromatography on silica gel (hexane/EtOAc 6/1).
Rf ) 0.07 (hexane/EtOAc 6/1). 1H NMR (300 MHz, CDCl3): δ
0.88 and 0.90 (6H, 2 × d, J ) 6.4 Hz), 1.70-1.94 (1H, m), 2.07
and 2.17 (2H, 2 × (d × d), J ) 12.0, 7.2, 6.9 Hz), 2.27 (3H, s);
2.33 (3H, s), 3.59 (1H, d × d, J ) 11.8, 4.7 Hz), 3.74 (1H, d, J )
4.9 Hz), 3.83 (1H, d × d, J ) 11.8, 4.1 Hz), 3.89-3.93 (1H, m),
4.70 (2H, s), 7.11-7.41 (9H, m). 13C NMR (75 MHz, CDCl3): δ
20.76, 20.81, 21.1, 25.9, 38.9, 63.5, 64.3, 71.3, 72.4, 79.0, 127.6,
127.8, 128.4, 128.6, 129.9, 132.4, 137.0, 138.6. IR (NaCl, cm-1):
νOH ) 3403. MS (70 eV): m/z (%) 342 (M+ + 1, 100). Anal. calcd
for C22H31NO2: C 77.38, H 9.15, N 4.10; found: C 77.59, H 9.33,
N 3.96.
Acknowledgment. We are indebted to Ghent University
(GOA) and the Fund for Scientific Research (FWOsFlanders)
for financial support.
Supporting Information Available: Spectroscopic data of
compounds 2b-2k, 3b-3g, and 4b-4k, and full dose-response
curves. This material is available free of charge via the Internet at
References
(1) Guinovart, C.; Navia, M. M.; Tanner, M.; Alonso, P. L. Malaria:
Burden of disease. Curr. Mol. Med. 2006, 6, 137–140.
(2) (a) Kumar, A.; Katiyar, S. B.; Agarwal, A.; Chauhan, P. M. S.
Perspective in antimalarial chemotherapy. Curr. Med. Chem. 2003,
10, 1137–1150. (b) Bruce-Chwatt, L. J., Black, R. H., Canfield, C. J.,
Clyde, D. F., Peters, W., Wernsdorfer, W. H., Eds. Chemotherapy of
Malaria, 2nd ed.; World Health Organization: Geneva, 1986.
(3) (a) Chauhan, P. M. S.; Srivastava, S. K. Present trends and future
strategy in chemotherapy of malaria. Curr. Med. Chem. 2001, 8, 1535–
1542. (b) Jefford, C. W. Why artemisinin and certain synthetic
peroxides are potent antimalarials. Implications for the mode of action.
Curr. Med. Chem. 2001, 8, 1803–1826. (c) Sweeney, T. R. The present
status of malaria chemotherapysmefloquine, a novel antimalarial. Med.
Res. ReV. 1981, 1, 281–301.
(4) Fitch, C. D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial
actions of quinoline drugs. Life Sci. 2004, 74, 1957–1972.
(9) Dejaegher, Y.; Mangelinckx, S.; De Kimpe, N. Rearrangement of
2-Aryl-3,3-dichloroazetidines: Intermediacy of 2-Azetines. J. Org.
Chem. 2002, 67, 2075–2081.
(5) Robin, A.; Brown, F.; Bahamontes-Rosa, N.; Wu, B.; Beitz, E.; Kun,
J. F. J.; Flitsch, S. L. Microwave-assisted ring opening of epoxides:
A general route to the synthesis of 1-aminopropan-2-ols with anti
malaria parasite activities. J. Med. Chem. 2007, 50, 4243–4249.
(6) Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for
peptides and peptidomimetics by means of the beta-lactam synthon
method. Chem. Soc. ReV. 1997, 377–386.
(10) (a) Barrow, K. D.; Spotswood, T. M. Stereochemistry and PMR spectra
of beta-lactams. Tetrahedron Lett. 1965, 37, 3325–3335. (b) Banik,
B. K.; Barakat, K. J.; Wagle, D. R.; Manhas, M. S.; Bose, K. A.
Microwave-induced organic reaction enhancement (MORE) chemistry.
Part 13. Microwave-assisted rapid and simplified hydrogenation. J.
Org. Chem. 1999, 64, 5746–5753. (c) Alcaide, B.; Almendros, P.;
Rodr´ıguez-Vicente, A.; Ruiz, M. P. Free radical synthesis of benzo-
fused tricyclic beta-lactams by intramolecular cyclization of 2-azeti-
dinone-tethered haloarenes. Tetrahedron 2005, 61, 2767–2778.
(11) (a) Ghorai, M. K.; Das, K.; Kumar, A. Lewis acid mediated SN2-type
nucleophilic ring opening followed by [4 + 2] cycloaddition of
N-tosylazetidines with aldehydes and ketones: synthesis of chiral 1,3-
oxazinanes and 1,3-amino alcohols. Tetrahedron Lett. 2007, 48, 4373–
4377. (b) Zanatta, N.; Squizani, A. M. C.; Fantinel, L.; Nachtigall,
F. M.; Borchhardt, D. M.; Bonacorso, H. G.; Martins, M. A. P.
Synthesis of N-substituted 6-trifluoromethyl-1,3-oxazinanes. J. Braz.
Chem. Soc. 2005, 16, 1255–1261. (c) Hashmi, S. M. A.; Wazeer,
M. I. M.; Hussain, M. S.; Reibenspies, J. H.; Perzanowski, H. P.; Ali,
Sk. A. Conformational assignments and a nitrogen inversion process
in some 3-acyloxy-1,3-oxazinanes by NMR and X-ray analysis.
J. Chem. Soc., Perkin Trans. 2 1999, 87, 7–883.
(7) (a) Ojima, I. Recent advances in the beta-lactam synthon method. Acc.
Chem. Res. 1995, 28, 383–389. (b) Fisher, J. F.; Meroueh, S. O.;
Mobashery, S. Bacterial resistance to beta-lactam antibiotics: Compel-
ling opportunism, compelling opportunity. Chem. ReV. 2005, 105, 395–
424. (c) Alcaide, B.; Almendros, P. Selective bond cleavage of the
beta-lactam nucleus: Application in stereocontrolled synthesis. Synlett
2002, 381–393. (d) Singh, G. S. Recent progress in the synthesis and
chemistry of azetidinones. Tetrahedron 2003, 59, 7631–7649. (e)
France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Advances in the
catalytic, asymmetric synthesis of beta-lactams. Acc. Chem. Res. 2004,
37, 592–600. (f) Alcaide, B.; Almendros, P.; Aragoncillo, C. Beta-
lactams: Versatile building blocks for the stereoselective synthesis of
non-beta-lactam products. Chem. ReV. 2007, 107, 4437–4492.
(8) (a) Speeter, M. E.; Maroney, W. H. The action of lithium aluminum
hydride on a ꢀ-lactam. J. Am. Chem. Soc. 1954, 76, 5810–5811. (b)
Sammes, P. G.; Smith, S. On the synthesis of azetidines from
3-hydroxypropylamines. J. Chem. Soc., Chem. Commun. 1983, 682–
684. (c) Ojima, I.; Zhao, M.; Yamato, T.; Nakahashi, K.; Yamashita,
M.; Abe, R. Azetidines and bisazetidines. Their synthesis and use as
the key intermediates to enantiomerically pure diamines, amino
alcohols, and polyamines. J. Org. Chem. 1991, 56, 5263–5277. (d)
(12) (a) Cassady, J. M.; Chan, K. K.; Floss, H. G.; Leistner, E. Recent
developments in the maytansinoid antitumor agents. Chem. Pharm.
Bull. 2004, 52, 1–26. (b) Meyers, A. I.; Roland, D. M.; Comins, D. L.;
Henning, R.; Fleming, M. P.; Shimizu, K. Progress toward the total