Journal of Medicinal Chemistry
Brief Article
product 5-thiosalicylic acid 5 was also prepared by chemical reduction
using Zn in acidic conditions (Scheme 2).
(9) (a) Sinha, V. R.; Kumria, R. Colonic drug delivery: prodrug
approach. Pharm. Res. 2001, 18 (5), 557. (b) Sinha, V. R.; Kumria, R.
Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci.
2003, 18, 3−18.
(10) Chourasia, M. K.; Kain, S. K. Polysaccharides for colon targeted
drug delivery. Drug Delivery 2004, 11, 129−148.
Scheme 2. Synthesis of Disulfide 3 and Its Reduction
Product
(11) Larrosa, M.; Tome-Carneiro, J.; Yanez-Gascon, M. J.; Alcantara,
D.; Selma, M. V.; Beltran, D.; Garcia-Conesa, M. T.; Urban, C.; Lucas,
R.; Tomas-Barberan, F.; Morales, J. C.; Espin, J. C. Preventive oral
treatment with resveratrol pro-prodrugs drastically reduce colon
inflammation in rodents. J. Med. Chem. 2010, 53, 7365−7376.
(12) Van-den-Mooter, G.; Maris, B.; Samyn, C.; Augustijns, P.;
Kinget, R. Use of azo polymers for colon-specific drug delivery. J.
Pharm. Sci. 1997, 86 (12), 1321−1327.
(13) Saphier, S.; Karton, Y. Novel salicylazo polymers for colon drug
delivery: dissolving polymers by means of bacterial degradation. J.
Pharm. Sci. 2010, 99 (2), 804−815.
(14) West, K. R.; Otto, S. Reversible covalent chemistry in drug
delivery. Curr. Drug Discovery Technol. 2005, 2, 123−160.
(15) Saito, G.; Swanson, J. A.; Lee, K.-D. Drug delivery strategy
utilizing conjugation via reversible disulfide linkages: role and site of
cellular reducing activities. Adv. Drug Delivery Rev. 2003, 55, 199−215.
(16) Sarti, F.; Bernkop-Schnurch, A. Chitosan and thiolated chitosan.
Adv. Polym. Sci. 2011, 243, 93−110.
(17) Wilding, I. Site-specific drug delivery in the gasrtointestinal tract.
Crit. Rev. Ther. Drug Carrier Syst. 2000, 17 (6), 557−620.
(18) Schacht, E.; Wilding, I. Process for the Preparation of Azo and/
or Disulfide Polymer Matrix Drug Delivery System for the Site Specific
Delivery of an Active Agent in the Colon. US005,407,682, Apr 18,
1995.
All nitro compounds used for the Hammett correlation and their
aniline derivatives were commercially available except for 5-amino-2-
dimethylaminobenzoic acid (4d), which was obtained from 2-
dimethylamino-5-nitrobenzoic acid (2d) by hydrogenation on Pd/C.
ASSOCIATED CONTENT
* Supporting Information
■
S
General experimental information, syntheses, spectral charac-
terization data, bacterial reduction tests, and HPLC analysis
results. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
*Phone: (972) 8-9381740. Fax: (972) 8-9381548. E-mail:
■
(19) Kudo, Y.; Ueshima, H.; Sakai, K. System for Release in Lower
Digestive Tract. WO/2000/074720, 2000.
(20) Pelkonen, K.; Hanninen, O. Interactions of xenobiotics with the
gastrointestinal flora. Gastrointest. Toxicol. 1986, 193−212 (Chapter
7).
(21) Scheline, R. R. Metabolism of foreign compounds by
gastrointestinal microorganisms. Pharm. Rev. 1973, 25, 451−523.
(22) Pieper, I. A.; Bertau, M. Predictive tools for the evaluation of
microbial effects on drugs during gastrointestinal passage. Expert. Opin.
Drug Metab. Toxicol. 2010, 6 (6), 747−760.
(23) Asche, C.; Dumy, P.; Carrez, D.; Croisy, A.; Demeunynck, M.
Nitrobenzylcarbamate prodrugs of cytotoxic acridines for potential use
with nitroreductase gene-directed enzyme prodrug therapy. Bioorg.
Med. Chem. Lett. 2006, 16, 1990−1994.
(24) Brown, J. P. Reduction of polymeric azo and nitro dyes by
intestinal bacteria. Appl. Environ. Microbiol. 1981, 41 (5), 1283−1286.
(25) Dubin, P.; Wright, L. Reduction of azo food dyes in cultures of
Proteus vulgaris. Xenobiotica 1975, 5 (9), 563−571.
(26) Walker, R.; Ryan, A. J. Some molecular parameters influencing
rate of reduction of azo compounds by intestinal microflora.
Xenobiotica 1971, 1 (4/5), 483−486.
(27) Brown, M. A.; DeVito, S. C. Predicting azo dye toxicity. Crit.
Rev. Environ. Sci. Technol. 1993, 23 (3), 249−324.
(28) Ueda, T.; Yamakoa, T.; Miyamoto, M.; Kimura, Y.; Sasatani, H.;
Kim, S.-I. Bacterial reduction of azo compounds as a model reaction
for the degradation of azo-containing polyurethane by the action of
intestinal flora. Bull. Chem. Soc. Jpn. 1996, 69, 1139−1142.
(29) Bernkop-Schnurch, A. Mucoadhesive systems in oral drug
delivery. Drug Discovery Today: Technol. 2005, 2 (1), 83−86.
(30) (a) Hansch, C.; Leo, A.; Taft, A. W. A survey of Hammett
substituent constants and resonance and field parameters. Chem. Rev.
1991, 91, 165−195. (b) Hansch, C.; Leo, A. In Exploring QSAR,
Fundamentals and Applications in Chemistry and Biology; American
Chemical Society: Washington, DC, 1995.
Notes
The authors declare no competing financial interest.
ABBREVIATIONS USED
■
5-ASA, 5-aminosalicylic acid; ADEPT, antibody-directed
enzyme prodrug therapy; GDEPT, gene directed enzyme
prodrug therapy; VDEPT, virus directed enzyme prodrug
therapy
REFERENCES
■
(1) Friend, D. R. New oral delivery systems for treatment of
inflammatory bowl disease. Adv. Drug Delivery Rev. 2005, 57, 247−265.
(2) Patel, M.; Shah, T.; Amin, A. Therapeutic opportunities in colon-
specific drug-delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2007,
24 (2), 147−202.
(3) McConnell, E. L.; Fadda, H. M.; Basit, A. Gut instincts:
explorations in intestinal physiology and drug delivery. Int. J. Pharm.
2008, 364, 213−226.
(4) Rajguru, V. V.; Gaikwad, P. D.; Bankar, V. H.; Pawar, S. P. An
overview on colonic drug delivery system. Int. J. Pharm. Sci. Rev. Res.
2011, 6 (2), 197−204.
(5) Das, S.; Chaudhury, A.; Ng, K.-Y. Preparation and evaluations of
zinc-pectin-chitosan composite particles for drug delivery to the colon:
role of chitosan in modifying in vitro and in vivo drug release. Int. J.
Pharm. 2011, 406, 11−20.
(6) Watts, P. J.; Illum, L. Colonic drug delivery. Drug Dev. Ind.
Pharm. 1997, 23 (9), 893−913.
(7) McConnell, E. L.; Short, M. D.; Basit, A. W. An in vivo
comparison of intestinal pH and bacterial as physiological trigger
mechanisms for colonic tergeting in man. J. Controlled Release 2008,
130, 154−160.
(8) Patel, M.; Amin, A. Recent trends in microbially and/or
enzymatically driven colon-specific drug delivery systems. Crit. Rev.
Ther. Drug Carrier Syst. 2011, 28 (6), 489−552.
(31) Jaffe, H. H. A reexamination of the Hammett equation. Chem.
Rev. 1953, 53, 191.
(32) Paula, F. S. d.; Sales, E. M.; Vallaro, M.; Fruttero, R.; Goulart, M.
O. F. The relationship between redox potentials and substituent
10784
dx.doi.org/10.1021/jm301381a | J. Med. Chem. 2012, 55, 10781−10785