Q. Wang, Y. Kobayashi / Tetrahedron Letters 51 (2010) 5592–5595
5595
Kobayashi, Y. Org. Lett. 2009, 11, 1103–1106; (e) Kiyotsuka, Y.; Kobayashi, Y.
Tetrahedron 2010, 66, 676–684.
8. Kiyotsuka, Y.; Kobayashi, Y. J. Org. Chem. 2009, 74, 7489–7495.
9. Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000, 603, 189–193.
10. The mixed solvent with low concentration of THF might be responsible for
stronger coordination of the picolinoxy group to MgBr2 than that in THF, thus
at the
a carbon exclusively with high inversion, except in a few
cases, thus expanding a scope of allylic substrates for installing
the alkynyl group.17
Acknowledgment
promoting the reaction at the
11. In contrast to the present study,
a
carbon.
selectivity has been increased in CH2Cl2 and
c
toluene: (a) Persson, E. S. M.; Van Klaveren, M.; Grove, D. M.; Bäckvall, J. E.; Van
Koten, G. Chem. Eur. J. 1995, 1, 351–359; (b) Alexakis, A.; Malan, C.; Lea, L.;
Benhaim, C.; Fournioux, X. Synlett 2001, 927–930; (c) Belelie, J. L.; Chong, J. M. J.
Org. Chem. 2002, 67, 3000–3006.
This work was supported by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science, Sports, and Culture,
Japan.
12. CuX-based reagents (X = Br, CN) gave low selectivity in reactions of other
combination of substrate/reagents.
13. Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119,
8738–8739.
14. Hydrogenation by using 10%Pd/C in solvents such as EtOAc suffered from a
partial racemization.
15. Davis, D. D.; Ansari, G. G. J. Org. Chem. 1970, 35, 4285–4287.
16. The electron-donating methyl substituent in p-MeC6H4 probably assists partial
racemization during the substitution reaction.
References and notes
1. (a) Falciola, C. A.; Alexakis, A. Eur. J. Org. Chem. 2008, 3765–3780; (b) Kar, A.;
Argade, N. P. Synthesis 2005, 2995–3022; (c) Negishi, E.; Liu, F. In Metal-
catalyzed Cross-coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH:
Weinheim, 1998. Chapter 1.
2. (a) Goering, H. L.; Kantner, S. S. J. Org. Chem. 1981, 46, 2144–2148; (b) Goering,
H. L.; Seitz, E. P., Jr.; Tseng, C. C. J. Org. Chem. 1981, 46, 5304–5308; and
references cited therein.
17. Representative procedure: To an ice-cold suspension of CuBrꢀMe2S (38.6 mg,
0.188 mmol) in THF (1 mL) was added TMSC„CMgBr (1.32 mL, 0.57 M in THF,
0.752 mmol) dropwise. The resulting mixture was stirred at 0 °C for 30 min
and picolinate 3A (99% ee by chiral HPLC, 47.6 mg, 0.188 mmol) in THF (1 mL)
was added dropwise. After 1 h at 0 °C, saturated NH4Cl was added to the
solution and the resulting mixture was extracted with EtOAc three times. The
combined extracts were dried over MgSO4 and concentrated to afford an oil,
which was purified by chromatography on silica gel with hexane/EtOAc to
3. Cf. substitution of
c-aryl primary allylic esters and halides: (a) Okamoto, S.;
Tominaga, S.; Saino, N.; Kase, K.; Shimoda, K. J. Organomet. Chem. 2005, 690,
6001–6007; (b) Falciola, C. A.; Tissot-Croset, K.; Alexakis, A. Angew. Chem., Int.
Ed. 2006, 45, 5995–5998; (c) Falciola, C. A.; Tissot-Croset, K.; Reyneri, H.;
Alexakis, A. Adv. Synth. Catal. 2008, 350, 1090–1100; and references cited
therein.
4. (a) Goering, H. L.; Tseng, C. C. J. Org. Chem. 1983, 48, 3986–3990; (b) Tseng, C. C.;
Yen, S.-J.; Goering, H. L. J. Org. Chem. 1986, 51, 2892–2895; (c) Norinder, J.;
Bogár, K.; Kanupp, L.; Bäckvall, J.-E. Org. Lett. 2007, 9, 5095–5098.
5. Takashima, Y.; Kobayashi, Y. J. Org. Chem. 2009, 74, 5920–5926.
6. Defined as ‘(% ee of product/% ee of substrate) ꢁ 100’.
afford
a
-product 5a (35.4 mg, 83%): 1H NMR (300 MHz, CDCl3) d 0.19 (s, 9H),
1.35 (d, J = 7 Hz, 3H), 3.28–3.41 (m, 1H), 6.15 (dd, J = 15, 6 Hz, 1H), 6.60 (d,
J = 15 Hz, 1H), 7.19–7.42 (m, 5H); 13C NMR (75 Hz, CDCl3, APT in parenthesis) d
0.3 (+), 21.8 (+), 30.0 (+), 86.6 (ꢂ), 108.7 (ꢂ), 126.4 (+), 127.4 (+), 128.6 (+),
129.6 (+), 131.0 (+), 137.2 (ꢂ). The stereochemical outcome (98% ee, 99%
inversion) was determined by chiral HPLC analysis: Chiralcel OJ-H, 25 °C,
hexane/i-PrOH = 99.1:0.1, 0.3 mL/min, tR/min = 20.4 (S-isomer, major), 24.2 (R-
isomer, minor).
7. (a) Kiyotsuka, Y.; Acharya, H. P.; Katayama, Y.; Hyodo, T.; Kobayashi, Y. Org. Lett.
2008, 10, 1719–1722; (b) Kiyotsuka, Y.; Kobayashi, Y. Tetrahedron Lett. 2008,
49, 7256–7259; (c) Kiyotsuka, Y.; Katayama, Y.; Acharya, H. P.; Hyodo, T.;
Kobayashi, Y. J. Org. Chem. 2009, 74, 1939–1951; (d) Hyodo, T.; Kiyotsuka, Y.;