24. López-Duarte, I.; Chairatana, P.; Wu, Y.; Pérez-Moreno, J.;
Bennett, P.M.; Reeve, J.E.; Boczarow, I.; Kaluza, W.; Hosny,
N.A.; Stranks, S.D.; Nicholas, R.J.; Clays, K.; Kuimova, M.K.;
Anderson, H. L. Thiophene-based dyes for probing
membranes. Org. Biomol. Chem 2015, 13: 3792
amphiphilic polymers: Self-assembly and biological imaging
applications. Mater. Sci. Eng.: C 2016, 66: 215-220
38. Huang, L.; Yang, S.; Chen, J.; Tian, J.; Huang, Q.; Huang, H.;
Wen, Y.; Deng, F.; Zhang, X.; Wei, Y. A facile surface
modification strategy for fabrication of fluorescent silica
nanoparticles with the aggregation-induced emission dye
through surfaceinitiated cationic ring opening polymerization.
Mater. Sci. Eng.: C 2019, 94, 270-278
25. Wan, Q.; Huang, Q.; Liu, M; Xu, D.; Huang, H.; Zhang, X.;
Wei, Y. Aggregation-induced emission active luminescent
polymeric
nanoparticles:
Non-covalent
fabrication
methodologies and biomedical applications. Appl. Mater.
Today 2017, 9: 145-160
39. Jiang, R.; Liu, M.; Huang, H.; Mao, L.; Huang, Q.; Wen, Y.;
Cao, Q.; Tian, J.; Zhang, X.; Wei, Y. Facile fabrication of
organic dyed polymer nanoparticles with aggregation-induced
emission using an ultrasound-assisted multicomponent reaction
and their biological imaging. J. Colloid Interface Sci. 2018,
519: 137-144
26. Huang, H.; Liu, M.; Wan, Q.; Jiang, R.; Xu, D.; Huang, Q.;
Wen, Y.; Deng, F.; Zhang, X.; Wei, Y. Facile fabrication of
luminescent hyaluronic acid with aggregation-induced
emission through formation of dynamic bonds and their
theranostic applications. Mater. Sci. Eng.: C 2018, 91: 201-207
40. Chen, J.; Liu, M.; Huang, Q.; Huang, H.; Huang, H.; Deng, F.;
Wen, Y.; Tian, J.; Zhang, X.; Wei, Y. Facile preparation of
fluorescent nanodiamond-based polymer composites through a
metal-free photo-initiated RAFT process and their cellular
imaging. Chem. Eng. J. 2018, 337: 82-89
27. Jiang, R.; Liu, M. Chen, T.; Huang, H.; Huang, Q.; Tian, J.;
Wen, Y.; Cao, Q.; Zhang, X.; Wei, Y. Facile construction and
biological imaging of cross-linked fluorescent organic
nanoparticles with aggregation-induced emission feature
through a catalyst-free azide-alkyne click reaction. Dyes Pigm.
2018, 148: 52-60
41. Huang, H.; Liu, Z.; Jiang, R.; Chen, J.; Mao, L.; Wen, Y.;
Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. Facile modification of
nanodiamonds with hyperbranched polymers based on
supramolecular chemistry and their potential for drug delivery.
J. Colloid Interface Sci. 2018, 513: 198-204
28. Jiang, R.; Liu, H.; Liu, M.; Tian, J.; Huang, Q.; Huang, H.;
Wen, Y.; Cao, Q.; Zhang, X.; Wei, Y. A facile one-pot
Mannich reaction for the construction of fluorescent polymeric
nanoparticles with aggregation-induced emission feature and
their biological imaging. Mater. Sci. Eng.: C 2017, 81: 416-421
42. Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.;
Wei, Y. Polymerizable aggregation-induced emission dye-
based fluorescent nanoparticles for cell imaging applications
Polym. Chem. 2014, 5: 356-360
29. Jiang, R.; Liu, M.; Li, C.; Huang, Q.; Huang, H.; Wan, Q.;
Wen, Y.; Cao, Q.; Zhang, X.; Wei, Y. Facile fabrication of
luminescent polymeric nanoparticles containing dynamic
linkages via a one-pot multicomponent reaction: Synthesis,
aggregation-induced emission and biological imaging. Mater.
Sci. Eng.: C 2017, 80: 708-714
43. Zhang, X.; Zhang, X.; Yang,B.; Liu, M.; Liu, W.; Chen, Y.;
Wei, Y.. Fabrication of aggregation induced emission dye-
based fluorescent organic nanoparticles via emulsion
polymerization and their cell imaging applications. Polym.
Chem. 2014, 5: 399-404
30. Cao, Q.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang,
H.; Wen, Y.; Zhang, X; Wei, Y. Microwave-assisted
multicomponent reactions for rapid synthesis of AIE-active
fluorescent polymeric nanoparticles by post-polymerization
method. Mater. Sci. Eng.: C 2017, 80: 578-583
44. Kidwai, M.; Singhal, K.; Rastogi, S. J. Paal Knorr Reaction for
Novel Pyrrolo[2,3-d]pyrimidines. Heterocycl. Chem. 2006, 43:
1231–1237.
45. (a) Tsuge, O.; Hatta, T.; Tashiro, H.; Kakura, Y.; Maeda, H.;
Kakehi, A. Cycloaddition of New N-Unsubstituted
Azomethine Ylides Generated from N-(Trimethylsilylmethyl)
thioureas to Electron-Deficient Olefins, Acetylenes and
31. Cao, Q.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang,
H.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of AIE-active
fluorescent polymeric nanoparticles through a catalyst-free
thiol-yne click reaction for bioimaging applications. Mater.
Sci. Eng.: C 2017, 80: 411-416
Aldehydes,
Synthetic
Equivalents
of
Nonstabilized
Aminonitrile Ylides. Tetrahedron 2000, 56: 7723–7735; (b)
Zaytsev, A.V.; Anderson, R.J.; Meth- Cohn, O.; Groundwater,
P.W. Regioselectivity in the reactions of polyfunctionalised
pyrroles with nucleophiles. Tetrahedron 2005, 61: 5831–5836.
32. Tian, J.; Jiang, R.; Gao, P.; Xu, D.; Mao, L.; Zeng, G.; Liu, M.;
Deng, F.; Zhang, X.; Wei, Y. Synthesis and cell imaging
applications of amphiphilic AIE-active poly(amino acid)s.
Mater. Sci. Eng.: C 2017, 79: 563-569
46. (a) Castellote, I.; Vaquero, J.J.; Alvarez-Bullia, J. Palladium-
catalysed amination of 2-acyl-1-alkyl-5-bromopyrroles.
Tetrahedron Lett. 2004, 45: 769–772; (b) Castellote, I.;
Vaquero, J.J.; Fernandes-Gadea, J.; Alvarez-Bullia, J.
33. Liu, Y.; Mao, L.; Liu, X.; Liu, M.; Xu, D.; Jiang, R.; Deng, F.;
Li, Y.; Zhang, X. Wei, Y. A facile strategy for fabrication of
aggregation-induced emission (AIE) active fluorescent
polymeric nanoparticles (FPNs) via post modification of
synthetic polymers and their cell imaging. Mater. Sci. Eng.: C
2017, 79: 590-595
Pyrrolodiazines.
6.
Palladium-Catalyzed
Arylation,
Heteroarylation, and Amination of 3,4-Dihydropyrrolo[1,2-a]
pyrazines. J. Org. Chem. 2004, 69, 8668–8675.
34. Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, M.; Huang, Q.;
Wan, Q.; Wen, Y.; Zhang, X.; Wei, Y. Direct encapsulation of
AIE-active dye with β cyclodextrin terminated polymers: Self-
assembly and biological imaging. Mater. Sci. Eng.: C 2017, 78:
862-867
47. (a) Aumann, K.M.; Scammells, P.J.; White, J.M.; Schiesser,
C.H. On the stability of 2-aminoselenophene-3-carboxylates:
potential dual-acting selenium-containing allosteric enhancers
of A1 adenosine receptor binding. Org. Biomol. Chem. 2007,
5: 1276–1281; (b) Harza, K.; Saravanan, J.; Mohan, S. Asian J.
Chem. 2007, 19: 3541–3544; (c) Angell, R.M.; Atkinson, F.L.;
Brown, M.J.; Chuang, T.T.; Christopher, J.A.; Cichy-Knight,
M.; Dunn, A.K.; Hightower, K.E.; Malkakorpi, S.; Musgrave,
J.R.; Neu, M.; Rowland, P.; Shea, R.L.; Smith, J.L.; Somers,
D.O.; Thomas, S.A.; Thompson, G.; Wang, R.L. N-(3-Cyano-
35. Long, Z.; Liu, M.; Jiang, R.; Wan, Q.; Mao, R.; Wan, Y.;
Deng, F.; Zhang, X.; Wei, Y. Preparation of water soluble and
biocompatible AIE-active fluorescent organic nanoparticles via
multicomponent reaction and their biological imaging
capability. Chemical Engineering Journal 2017, 308: 527-534
4,5,6,7-tetrahydro-1-benzothien-2-yl)amides
as
potent,
36. Long, Z.; Mao, L.; Liu, M.; Wan, Q.; Wan, Y.; Zhang, X.;
Wei, Y. Marrying multicomponent reactions and aggregation-
induced emission (AIE): new directions for fluorescent
nanoprobes. Polym. Chem. 2017, 8: 5644-5654
selective, inhibitors of JNK2 and JNK3. Bioorg. Med. Chem.
Lett. 2007, 17: 1296–1301; (d) Lütjens, H.; Zickgraf, A.;
Figler, H.; Linden, J.; Olsson, R.A.; Scammells, P.J. 2-Amino-
3-benzoylthiophene allosteric enhancers of A1 adenosine
agonist binding: new 3, 4-, and 5-modifications. J. Med. Chem.
37. Long, Z.; Liu, M.; Wang, K.; Deng, F.; Xu, D.; Liu, L.; Wan,
Y.; Zhang, X.; Wei, Y. Facile synthesis of AIE-active