6 of 6
HURKES ET AL.
Hoboken, NJ 2017 141. b) R. Pietschnig, S. Spirk, Coord. Chem.
Rev. 2016, 323, 87. c) P. D. Lickiss, Adv. Inorg. Chem. 1995, 42,
147. d) P. D. Lickiss, in Chemistry of Organic Silicon Com-
pounds, (Eds: Z. Rappoport, Y. Apeloig) Vol. 3, Wiley,
Chichester 2001 695.
contrast, only 10 mg of product was obtained following
the same procedure without addition of 3 under other-
wise identical conditions. The spectral data for the
product (4‐hydroxymethyl‐4‐methylcyclohex‐2‐en‐1‐one)
match the values reported in the literature.
[2] a) S. Özçubukçu, F. Schmidt, C. Bolm, Org. Lett. 2005, 7, 1407.
b) N. T. Tran, T. Min, A. K. Franz, Chem. – Eur. J. 2011, 17,
9897. c) M. Liu, N. T. Tran, A. K. Franz, J. K. Lee, J. Org. Chem.
2011, 76, 7186. d) C. Beemelmanns, R. Husmann, D. K.
Whelligan, S. Özçubukçu, C. Bolm, Eur. J. Org. Chem. 2012,
3373. e) A. G. Schafer, J. M. Wieting, A. E. Mattson, Org. Lett.
2011, 13, 5228. f) A. M. Hardman‐Baldwin, A. E. Mattson,
ChemSusChem 2014, 7, 3275. g) J. M. Wieting, T. J. Fisher, A.
G. Schafer, M. D. Visco, J. C. Gallucci, A. E. Mattson, Eur. J.
Org. Chem. 2015, 525. h) T. Min, J. C. Fettinger, A. K. Franz,
ACS Catal. 2013, 2, 1661. i) P. D. Lickiss, D. C. Braddock, B.
Rowley, S. Fussell, Silanols as Catalysts for Direct Amide Bond
Formation, in 8th European Silicon Days, Poznan, Poland 2016.
4.4 | Crystallographic Details
The crystal structures were determined using a Bruker
APEX‐II CCD diffractometer using with graphite‐
monochromated Mo Kα radiation (0.71073 Å). All struc-
tures were solved by direct methods (SHELXS‐97)[12] and
refined by full‐matrix least‐squares techniques against F2
(SHELXL‐2014/6).[12] The non‐hydrogen atoms were
refined with anisotropic displacement parameters without
any constraints. The hydrogen atoms of the phenyl rings
were put at the external bisectors of the C─C─C angles at
C─H distances of 0.95 Å and common isotropic displace-
ment parameters were refined for the hydrogen atoms of
the same ring. For 3, the positions of the hydrogen atoms
of the OH groups were taken from a difference Fourier
map, the O─H distances were fixed to 0.84 Å and the hydro-
gen atoms were refined with individual isotropic displace-
ment parameters without any constraints to the bond
angles. The hydrogen atoms of the CH2 groups of the sol-
vent co‐crystallizing with 3 were refined with common iso-
tropic displacement parameters for the hydrogen atoms of
the same group and idealized geometries with approxi-
mately tetrahedral angles and C─H distances of 0.99 Å.
Table 2 summarizes the crystal data and refinement for
the structures of 1 and 3. Crystallographic data for this
paper can be obtained free of charge quoting CCDC
1826249–1826250 from the Cambridge Crystallographic
[3] W. A. Herrmann, A. Salzer (Eds), Synthetic Methods of Organ-
ometallic and Inorganic Chemistry: Literature, Laboratory
Techniques and Common Starting Materials, Thieme, Stuttgart
1996.
[4] a) K. C. Eapen, C. Tamborski, J. Fluorine Chem. 1980, 15, 239.
b) T. Schaefer, K. Marat, A. Lemire, F. Janzen Alexander, Org.
Magn. Reson. 2005, 18, 90.
[5] a) H. Marsmann, in 29Si NMR Spectroscopic Results, (Eds: P.
Diehl, E. Fluck, R. Kosfeld), Springer, Berlin 1981 65. b) M.
Y. Lo, C. Zhen, M. Lauters, G. E. Jabbour, A. Sellinger,
J. Am. Chem. Soc. 2007, 129, 5808.
[6] a) A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, A. L.
Thompson, B. Y. Xue, Dalton Trans. 2003, 12, 2496. b) P. K.
Coffer, K. B. Dillon, J. A. K. Howard, D. S. Yufit, N. V. Zorina,
Dalton Trans. 2012, 41, 4460.
[7] P. G. Jones, Deposition number CCDC 238440, 2004.
[8] N. Hurkes, S. Spirk, F. Belaj, R. Pietschnig, Z. Anorg. Allg.
Chem. 2013, 639, 2631.
[9] a) S. Spirk, S. Salentinig, K. Zangger, F. Belaj, R. Pietschnig,
Supramol. Chem. 2011, 23, 801. b) D. Čas, N. Hurkes, S. Spirk,
F. Belaj, C. Bruhn, G. N. Rechberger, R. Pietschnig, Dalton
Trans. 2015, 44, 12818. c) S. Spirk, M. Nieger, F. Belaj, R.
Pietschnig, Dalton Trans. 2009, 163.
ACKNOWLEDGEMENTS
Two of the authors (J.R.K. and R.P.) acknowledge Prof.
Robert West, for his invitations to join his laboratory at
UW in the 1990s and without whose catalytic activity
the current collaboration would not have been possible.
R.P. thanks the Deutsche Forschungsgemeinschaft (CRC
1319) for financial support.
[10] N. T. Tran, S. O. Wilson, A. K. Franz, Org. Lett. 2012, 14, 186.
[11] A. N. Thadani, A. R. Stankovic, V. H. Rawal, Proc. Natl. Acad.
Sci. U. S. A. 2004, 101, 5846.
[12] a) G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112. b) G. M.
Sheldrick, SHELXS‐97. Program for the Solution of Crystal
Structures, University of Göttingen, Germany 1997.
ORCID
How to cite this article: Hurkes N, Belaj F, Koe
JR, Pietschnig R. Synthesis, structure and catalytic
properties of bis[2‐(trifluoromethyl)phenyl]
silanediol. Appl Organometal Chem. 2018;e4427.
REFERENCES
[1] a) R. Pietschnig, in Main Group Strategies towards Functional
Organic Materials, (Eds: T. Baumgartner, F. Jäkle), Wiley,