ACS Catalysis
Research Article
over Silica-Supported Catalysts That Combine a Grafted Rhodium
Complex and Palladium Nanoparticles: Evidence for Substrate
Activation on Rhsingle-site−PdmetalMoieties. J. Am. Chem. Soc.
2006, 128, 7065−7076.
(30) Yan, N.; Yuan, Y.; Dyson, P. J.; Yan, N.; Yuan, Y.; Dyson, P. J.
Rhodium nanoparticle catalysts stabilized with a polymer that
enhances stability without compromising activity. Chem. Commun.
2011, 47, 2529−2531.
(31) Motoyama, Y.; Takasaki, M.; Yoon, S.-H.; Mochida, I.;
Nagashima, H. Rhodium Nanoparticles Supported on Carbon
Nanofibers as an Arene Hydrogenation Catalyst Highly Tolerant to
a Coexisting Epoxido Group. Org. Lett. 2009, 11, 5042−5045.
(32) Park, K. H.; Jang, K.; Kim, H. J.; Son, S. U. Near-Monodisperse
Tetrahedral Rhodium Nanoparticles on Charcoal: The Shape-
Dependent Catalytic Hydrogenation of Arenes. Angew. Chem., Int.
Ed. 2007, 46, 1152−1155.
(33) Dykeman, R. R.; Yuan, Y.; Yan, N.; Asakura, H.; Teramura, K.;
Tanaka, T.; Dyson, P. J. Rational Design of a Molecular Nanocatalyst-
Stabilizer that Enhances both Catalytic Activity and Nanoparticle
Stability. ChemCatChem 2012, 4, 1907−1910.
Support Single-Site Co(II)-Hydride Catalysts for Arene Hydro-
genation. J. Am. Chem. Soc. 2018, 140, 433−440.
(48) Liu, X.; Xu, L.; Xu, G.; Jia, W.; Ma, Y.; Zhang, Y. Selective
Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols or
Cyclohexanes over Magnetic CoNx@NC Catalysts under Mild
Conditions. ACS Catal. 2016, 6, 7611−7620.
(49) Nanotechnologies: Principles, Applications, Implications and
Hands-On Activities; European Commission, European Union, 2012.
(50) Polshettiwar, V.; Asefa, T. Nanocatalysis: Synthesis and
Applications; Wiley, 2013.
(51) Jagadeesh, R. V.; Surkus, A.-E.; Junge, H.; Pohl, M.-M.; Radnik,
J.; Rabeah, J.; Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M.
Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of
Nitroarenes to Anilines. Science 2013, 342, 1073−1076.
(52) Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann,
H.; Pohl, M.-M.; Radnik, J.; Beller, M. MOF-derived cobalt
nanoparticles catalyze a general synthesis of amines. Science 2017,
358, 326−332.
(53) Corma, A.; Serna, P. Chemoselective Hydrogenation of Nitro
Compounds with Supported Gold Catalysts. Science 2006, 313, 332−
334.
(54) Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely,
C. J.; Hutchings, G. J. Designing bimetallic catalysts for a green and
sustainable future. Chem. Soc. Rev. 2012, 41, 8099−8139.
(55) Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek,
M.; Dugulan, A. I.; de Jong, K. P. Supported Iron Nanoparticles as
Catalysts for Sustainable Production of Lower Olefins. Science 2012,
335, 835−838.
(56) van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank,
A. J. G.; Deckert, V.; Weckhuysen, B. M. Catalytic processes
monitored at the nanoscale with tip-enhanced Raman spectroscopy.
Nat. Nanotechnol. 2012, 7, 583.
(57) Yuan, Y.; Yan, N.; Dyson, P. J. Advances in the Rational Design
of Rhodium Nanoparticle Catalysts: Control via Manipulation of the
Nanoparticle Core and Stabilizer. ACS Catal. 2012, 2, 1057−1069.
(58) He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis,
Characterization, and Application of Metal Nanoparticles Supported
on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry.
Angew. Chem., Int. Ed. 2016, 55, 12582−12594.
(59) Kong, X.; Fang, Z.; Bao, X.; Wang, Z.; Mao, S.; Wang, Y.
Efficient hydrogenation of stearic acid over carbon coated Ni Fe
catalyst. J. Catal. 2018, 367, 139−149.
(60) Li, M.; Li, Y.; Jia, L.; Wang, Y. Tuning the selectivity of phenol
hydrogenation on Pd/C with acid and basic media. Catal. Commun.
2018, 103, 88−91.
(61) Wei, Z.; Chen, Y.; Wang, J.; Su, D.; Tang, M.; Mao, S.; Wang,
Y. Cobalt Encapsulated in N-Doped Graphene Layers: An Efficient
and Stable Catalyst for Hydrogenation of Quinoline Compounds.
ACS Catal. 2016, 6, 5816−5822.
(62) Wei, Z.; Wang, J.; Mao, S.; Su, D.; Jin, H.; Wang, Y.; Xu, F.; Li,
H.; Wang, Y. In Situ-Generated Co0-Co3O4/N-Doped Carbon
Nanotubes Hybrids as Efficient and Chemoselective Catalysts for
Hydrogenation of Nitroarenes. ACS Catal. 2015, 5, 4783−4789.
(63) Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of
carbon nanorods and graphene nanoribbons from a metal-organic
framework. Nat. Chem. 2016, 8, 718.
(34) Tran, B. L.; Fulton, J. L.; Linehan, J. C.; Lercher, J. A.; Bullock,
R. M. Rh(CAAC)-Catalyzed Arene Hydrogenation: Evidence for
Nanocatalysis and Sterically Controlled Site-Selective Hydrogenation.
ACS Catal. 2018, 8, 8441−8449.
(35) Miyamura, H.; Suzuki, A.; Yasukawa, T.; Kobayashi, S.
Polysilane-Immobilized Rh-Pt Bimetallic Nanoparticles as Powerful
Arene Hydrogenation Catalysts: Synthesis, Reactions under Batch and
Flow Conditions and Reaction Mechanism. J. Am. Chem. Soc. 2018,
140, 11325−11334.
(36) Bartlesville, F.-N. Hydrogenation of benzene in the presence of
water. U.S. Patent 6,013,847 A, 2000.
́
(37) Mevellec, V.; Roucoux, A.; Ramirez, E.; Philippot, K.;
Chaudret, B. Surfactant-Stabilized Aqueous Iridium(0) Colloidal
Suspension: An Efficient Reusable Catalyst for Hydrogenation of
Arenes in Biphasic Media. Adv. Synth. Catal. 2004, 346, 72−76.
(38) Kang, X.; Liu, H.; Hou, M.; Sun, X.; Han, H.; Jiang, T.; Zhang,
Z.; Han, B. Synthesis of Supported Ultrafine Non-noble Subnan-
ometer-Scale Metal Particles Derived from Metal-Organic Frame-
works as Highly Efficient Heterogeneous Catalysts. Angew. Chem., Int.
Ed. 2016, 55, 1080−1084.
(39) Lu, L.; Rong, Z.; Du, W.; Ma, S.; Hu, S. Selective
Hydrogenation of Single Benzene Ring in Biphenyl Catalyzed by
Skeletal Ni. ChemCatChem 2009, 1, 369−371.
(40) Titova, Y. Y.; Schmidt, F. K. Nanoscale Ziegler catalysts based
on bis(acetylacetonate)nickel in the arene hydrogenation reactions.
Appl. Catal., A 2017, 547, 105−114.
(41) Rekker, T.; Reesink, B. H.; Borninkhof, F. Process for the
Production of Cyclohexane. U.S. Patent 5,856,603 A, 1999.
(42) Sanderson, J. R.; Renken, T. L.; McKinney, M. W. Manufacture
of cyclohexane from benzene and a hydrogen source containing
impurities. U.S. Patent 6,750,374 B2, 2004.
́
(43) Luo, W.; Shi, H.; Schachtl, E.; Gutierrez, O. Y.; Lercher, J. A.
Active Sites on Nickel-Promoted Transition-Metal Sulfides That
Catalyze Hydrogenation of Aromatic Compounds. Angew. Chem., Int.
Ed. 2018, 57, 14555−14559.
(44) Hu, S.-C.; Wang, I.-K.; Wu, J.-C. Process for the hydrogenation
of benzene to cyclohexane. U.S. Patent 4,731,496 A, 1998.
(45) Stuhl, L. S.; Rakowski DuBois, M.; Hirsekorn, F. J.; Bleeke, J.
R.; Stevens, A. E.; Muetterties, E. L. Catalytic homogeneous
hydrogenation of arenes. 6. Reaction scope for the (.eta.3-2-
propenyl)tris(trimethyl phosphite-P)cobalt catalyst. J. Am. Chem.
Soc. 1978, 100, 2405−2410.
(46) Sapre, A. V.; Gates, B. C. Hydrogenation of aromatic
hydrocarbons catalyzed by sulfided cobalt oxide-molybdenum
oxide/.alpha.-aluminum oxide. Reactivities and reaction networks.
Ind. Eng. Chem. Process Des. Dev. 1981, 20, 68−73.
(47) Ji, P.; Song, Y.; Drake, T.; Veroneau, S. S.; Lin, Z.; Pan, X.; Lin,
W. Titanium(III)-Oxo Clusters in a Metal-Organic Framework
(64) Tang, J.; Yamauchi, Y. MOF morphologies in control. Nat.
Chem. 2016, 8, 638.
(65) Dang, S.; Zhu, Q.-L.; Xu, Q. Nanomaterials derived from
metal−organic frameworks. Nat. Rev. Mater. 2018, 3, 17075.
(66) Shen, K.; Chen, X.; Chen, J.; Li, Y. Development of MOF-
Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS
Catal. 2016, 6, 5887−5903.
(67) Lee, K. J.; Lee, J. H.; Jeoung, S.; Moon, H. R. Transformation
of Metal-Organic Frameworks/Coordination Polymers into Func-
tional Nanostructured Materials: Experimental Approaches Based on
Mechanistic Insights. Acc. Chem. Res. 2017, 50, 2684−2692.
(68) Guan, B. Y.; Kushima, A.; Yu, L.; Li, S.; Li, J.; Lou, X. W. D.
Coordination Polymers Derived General Synthesis of Multishelled
8590
ACS Catal. 2019, 9, 8581−8591