5020
S. T. Tong, D. Barker / Tetrahedron Letters 47 (2006) 5017–5020
7. Takehisa, K.; Kenji, K.; Shunichi, Y. Chem. Pharm. Bull.
afford the crude product, which was purified by flash
1967, 15, 337–344.
8. McFarlane, A. K.; Thomas, G.; Whiting, A. J. Chem.
Soc., Perkin Trans. 1 1995, 2803–2808.
chromatography (3:1 hexane–EtOAc) to provide 19
20
(234 mg, 69%) as a pale yellow oil: ½aꢂD ꢀ18.9 (c 0.5,
CHCl3);
m
max/cmꢀ1 3414 (O–H), 2930 (C–H), 2175
9. Leonard, N. J.; Swann, S., Jr.; Figueras, J., Jr. J. Am.
Chem. Soc. 1952, 74, 4620–4624.
10. Clemo, G. R.; Ramage, G. R. J. Chem. Soc. 1931, 437–
442.
11. Denmark, S. E.; Matsuhashi, H. J. Org. Chem. 2002, 67,
3479–3486.
12. Aaron, H. S.; Wicks, G. E.; Rader, C. P. J. Org. Chem.
1964, 29, 2248–2252.
13. Aaron, H. S.; Wicks, G. E.; Rader, C. P. J. Org. Chem.
1964, 29, 2252–2256.
14. Moehrle, H.; Karl, C.; Scheidegger, U. Tetrahedron 1968,
24, 6813–6824.
15. Hassner, A.; Maurya, R.; Padwa, A.; Bullock, W. H.
J. Org. Chem. 1991, 56, 2775–2781.
16. Chang, M.-Y.; Hsu, R.-T.; Tseng, T.-W.; Sun, P.-P.;
Chang, N.-C. Tetrahedron 2004, 60, 5545–5550.
17. Drag, M.; Lataj, R.; Gumienna-Kontecka, E.; Kozlowski,
H.; Kafarski, P. Tetrahedron: Asymmetry 2003, 14, 1837–
1845.
18. Aldehyde 13 was used immediately upon synthesis as it
was found to decompose in 1–2 days even if stored at low
temperatures.
19. Balboni, G.; Marastoni, M.; Merighi, S.; Borea; Pier, A.;
Tomatis, R. E. J. Med. Chem. 2000, 35, 979–988.
20. Thai, D. L.; Sapko, M. T.; Reiter, C. T.; Bierer, D. E.;
Perel, J. M. J. Med. Chem. 1998, 41, 591–601.
21. Portoghese, P. S.; Pazdernik, T. L.; Kuhn, W. L.; Hite, G.;
Shafier, A. J. Med. Chem. 1968, 11, 12–15.
22. Logue, M. W.; Teng, K. J. Org. Chem. 1982, 47, 2549–
2553.
(C„C), 1693 (C@O); dH (400 MHz, CDCl3; Me4Si) 0.10
(6H, s, Si(CH3)2), 0.90 (9H, s, SiMe2C(CH3)3), 1.47 (9H, s,
CO2C(CH3)3), 1.56–1.75 (5H, m, 3b-H, 4-H · 2, 5-H · 2),
1.97 (1H, br d, J = 13.2 Hz, 3a-H), 3.10–2.90 (1H, br s, 6a-
H), 3.95 (1H, br d, J = 10.8 Hz, 6b-H), 4.18 (1H, dd,
J1 = 10.1 Hz, J2 = 6.2 Hz, 2-H), 4.32 (2H, d, J = 1.7 Hz,
40-H), 4.65 (1H, dd, J1 = 6.3 Hz, J2 = 6.3 Hz, 10-H); dC
(100 MHz; CDCl3; Me4Si) ꢀ5.30 (Si(CH3)2), 18.11
(SiMe2C(CH3)3), 19.08 (C-4), 24.12 (C-3 or C-5), 24.57
(C-3 or C-5), 25.67 (SiMe2C(CH3)3), 28.28 (CO2C(CH3)3),
40.38 (C-6), 51.65 (C-40), 55.11 (C-2), 62.60 (C-10), 79.52
(CO2C(CH3)3), 83.86 (C-20 or C-30), 83.94 (C-20 or C-30),
155.39 (quat. C@O); m/z (FAB, NBA) 384 (0.14, M+H+),
328 (0.29), 310 (0.24), 284 (0.29), 184 (0.25,
MꢀCH(OH)C„CCH2OTBS), 128 (1.00, Mꢀ[CH-
(OH)C„CCH2OTBS+CðCH3Þþ]), 84 (0.62, N(CH2)5);
3
HRMS calculated for C20H38NO4Si (M+H+) 384.25701,
found 384.25768; and 20 (14 mg, 5%) as a pale yellow oil:
20
½aꢂD ꢀ18.9 (c 0.5, CHCl3); mmax/cmꢀ1 2929 (C–H), 2266
(C„C), 1758 (C@O), 1415, 1260; dH (300 MHz, CDCl3,
Me4Si) 0.12 (6H, s, Si(CH3)2), 0.91 (9H, s, C(CH3)3), 1.35–
1.44 (2H, m, 6a-H, 7a-H), 1.55–1.75 (2H, m, 8a-H, 6b-H),
1.74–1.84 (1H, m, 8b-H), 1.90–2.03 (1H, m, 7b-H), 2.83
(1H, td, J1 = 12.7 Hz, J2 = 3.4 Hz, 5a-H), 3.66 (1H, ddd,
J1 = 11.5 Hz, J2 = 8.0 Hz, J3 = 3.7 Hz, 8a-H), 3.88 (1H,
dd, J1 = 13.2 Hz, J2 = 4.4 Hz, 5b-H), 4.37 (2H, d,
J = 1.7 Hz, CH2O), 5.22 (1H, dt, J1 = 8.0 Hz,
J2 = 1.6 Hz, 1-H); dC (75.5 MHz, CDCl3, Me4Si) ꢀ5.22
(Si(CH3)2), 18.21 (C(CH3)3), 22.68 (C-4), 23.88 (C-3),
25.71 (C(CH3)3), 27.21 (C-5), 41.98 (C-2), 51.52 (CH2O),
56.93 (C-6), 67.42 (C-7), 88.77 (C„C), 156.0 (quat. C@O);
m/z (FAB, NBA) 310 (1.00, M+H+), 154 (0.28), 134
(0.40), 73 (0.40); HRMS calculated for C16H28NO3Si
(M+H+) 310.18385, found 310.18412.
23. Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63,
458–460.
24. Gruza, H.; Kiciak, K.; Krasinski, A.; Jurczak, J. Tetra-
hedron: Asymmetry 1997, 8, 2627–2631.
25. syn-1-N-Boc-2-Alcohols of this form commonly cyclise to
form oxazolidinones, for examples, see: Beak, P.; Lee, W.
J. Org. Chem. 1990, 55, 2578–2580.
27. We later were to discover that if at any time before the Boc
group is removed and quinolizidine ring formation is
complete that this hydroxyl group was converted to a
mesylate then oxazolidinone formation is the predominant
reaction, thus necessitating the protection of the hydroxyl
group until that stage.
26. To a stirred solution of alkyne 18 (300 mg, 1.76 mmol) in
THF (5 mL) at ꢀ78 ꢁC under N2 was slowly added n-BuLi
(1.6 M, 1.05 mL, 1.68 mmol). The mixture was stirred at
0 ꢁC for 75 min and then cooled to ꢀ78 ꢁC. A solution of
aldehyde 17 (190 mg, 0.88 mmol) in THF (3 mL) was
added dropwise to the mixture and stirred at 0 ꢁC for 4 h.
After that, the mixture was left stirring at room temper-
ature overnight. The mixture was then diluted with 1 M
NaH2PO4 (20 mL) and extracted with EtOAc (20 mL · 3).
The combined organic extracts were washed with brine
(20 mL), dried (MgSO4) and concentrated in vacuo to
22
20
28. ½aꢂD +26.2 (c 0.25, CHCl3) [lit.2 ½aꢂD 28.0] (c 0.23, CHCl3);
dH (300 MHz; CDCl3; Me4Si) 1.22–1.72 (m, 9H), 1.79–
2.01 (m, 4H), 2.02 (s, 3H), 2.74–2.81 (m, 2H), 3.90–3.92
(m, 1H), 6.18 (br s, 1H); dC (75.5 MHz; CDCl3; Me4Si)
169.5, 64.2, 56.6, 56.5, 48.0, 29.6, 29.0, 25.5, 23.9, 23.5,
20.6; HRMS calculated for C11H21N2O (M+H+),
197.1654, found 197.1660. These values are consistent
with the literature values.1,2