LETTER
Straightforward Synthesis of N-Hydroxy Peptides
673
hydroxyl group. We are currently broadening the scope of
this methodology to incorporate other N-hydroxy amino
acid residues with (R) or (S) configurations.
References
(1) For reviews see: (a) Ottenheijm, H. C. J.; Herscheid, J. D.
M. Chem. Rev. 1986, 86, 697. (b)Marraud, M.; Vanderesse,
R. In Houben-Weyl, Methods of Organic Chemistry, 4th ed.,
Vol. E22c; Goodman, M., Ed.; Thieme: Stuttgart, 2002, .
(2) (a) Isolation and structure determination: Umezawa, K.;
Nakazawa, K.; Ikeda, Y.; Naganawa, H.; Kondo, S. J. Org.
Chem. 1999, 64, 3034. (b) Biosynthesis of polyoxypeptin
A: Umezawa, K.; Ikeda, Y.; Kawase, O.; Naganawa, H.;
Kondo, S. J. Chem. Soc., Perkin Trans. 1 2001, 1550.
(3) (a) Garrouste, P.; Pawlowski, M.; Tonnaire, T.; Sicsic, S.;
Dumy, P.; de Rosny, E.; Reboud-Ravaux, M.; Fulcrand, P.;
Martinez, J. Eur. J. Med. Chem. 1998, 33, 423.
Fmoc-Val-OH (1 equiv)
EDCI (1.1 equiv)
HOBt (1 equiv)
O
H
H2N
N
CO2Et
N
CH2Cl2
OH
O
O
N
H
H
N
N
CO2Et
FmocHN
(b) Marastoni, M.; Bazzaro, M.; Salvadori, S.; Bortolotti, F.;
Tomatis, R. Bioorg. Med. Chem. 2001, 9, 939.
O
OH
O
(4) (a) Dupont, V.; Lecoq, A.; Mangeot, J.-P.; Aubry, A.;
Boussard, G.; Marraud, M. J. Am. Chem. Soc. 1993, 115,
8898. (b) Takeuchi, Y.; Marshall, G. R. J. Am. Chem. Soc.
1998, 120, 5363.
Scheme 4
(5) Selected examples: (a) Akiyama, M.; Katoh, A.; Mutsui, Y.;
Watanabe, Y.; Umemoto, K. Chem. Lett. 1996, 915.
(b) Hara, Y.; Akiyama, M. J. Am. Chem. Soc. 2001, 123,
7247.
(6) Kolosa, T.; Chimiak, A. Tetrahedron 1977, 33, 3285.
(7) Formation of the N-benzyloxy amide link is very sensitive to
steric hindrance and generally requires strong acylating
systems such as HATU {N-[(dimethylamino)-1H-1,2,3-
triazolo[4,5-b]pyridin-1-ylmethylene]-N-methylmethan-
aminium hexafluorophosphate} see: (a) Akiyama, M.;
Iesaki, K.; Katoh, A.; Shimizu, K. J. Chem. Soc., Perkin
Trans. 1 1986, 851. (b) Bianco, A.; Zabel, C.; Walden, P.;
Jung, G. J. Peptide Sci. 1998, 4, 471.
(8) (a) Nucleophilic substitution on α-bromo acid: Kolasa, T.;
Chimiak, A. Tetrahedron 1974, 30, 3591. (b) Use of α-
hydroxy acid via the triflate derivative: Feenstra, R. W.;
Stokkingreef, E. H. M.; Nivard, R. J. F.; Ottenheijm, H. C. J.
Tetrahedron 1988, 44, 5583. (c) Under Mitsunobu
conditions: Hanessian, S.; Yang, R.-Y. Synlett 1995, 633.
(d) Oxyamination of N-acylsultam enolate: Oppolzer, W.;
Tamura, O.; Deerberg, J. Helv. Chim. Acta 1992, 75, 1965.
(e) Oxidation of α-amino acid derivatives: Grundke, G.;
Keese, W.; Rimpler, M. Synthesis 1987, 1115. (f) See also:
Feenstra, R. W.; Stokkingreef, E. H. M.; Reichwein, A. M.;
Lousberg, W. B. H.; Ottenheijm, H. C. J. Tetrahedron 1990,
46, 1745. (g) See also: Detomaso, A.; Curci, R. Tetrahedron
Lett. 2001, 42, 755.
Table 2 Synthesis of N-Hydroxy Peptides
Entry Fmoc-
AA1-Cl
NHOH-AA2-AA3-OEt 3 Method Aa Method Bb
Yieldc (%) Yieldc (%)
1
2
Gly
Ala
Ala
Phe
Phe
Ala
Ala
Phe
Phe
Val
Val
Ala
Ala
Ala
Val
Gly
AlaLeu
AlaLeu
AlaLeu
AlaLeu
AlaLeu
AlaVal
AlaVal
AlaVal
AlaVal
AlaVal
AlaVal
AlaPhe
AlaPhe
ValVal
ValVal
AlaLeu
(R,S)-a
(S,S)-a
(R,S)-a
(S,S)-a
(R,S)-a
(S,S)-b
(R,S)-b
(S,S)-b
(R,S)-b
(R,S)-b
(R,S)-b
(S,S)-c
(R,S)-c
(S,S)-f
(S,S)-f
(R,S)-a
66
69
64
51
33
70
67
57
58
25
40d
–
85
–
3
84
76
77
–
4
5
6
7
82
68
–
8
9
10
11
12
13
14
15
16
78
–
85
–
(9) Ottenheijm, H. C. J.; de Man, J. H. M. Synthesis 1975, 163.
(10) The two oxime isomers are separated by liquid
chromatography. No difference in diastereoselectivity was
observed in their reduction so that they were used as a
mixture.
63
26
–
77
73
85
(11) Tijhuis, M. W.; Herscheid, J. D. M.; Ottenheijm, H. C. J.
Synthesis 1980, 890.
66
(12) Reduction of 2h with sodium cyanoborohydride was also
inefficient.
a Method A: 1) 3, TMSCl (2 equiv), pyridine (4 equiv), CH2Cl2, r.t.,
30 min. 2) Fmoc-AA1-Cl (1 equiv), CH2Cl2, O °C, 10 min, then r.t.,
2 h. 3) H3O+.
(13) All new compounds gave spectroscopic and analytical data
in agreement with the assigned structures. Selected example:
N-hydroxy dipeptide (S,S)-3b: [α]D25 –3.8 (c 2.26, CHCl3).
1H NMR (300 MHz, CDCl3): δ = 7.08 (d, 3J = 9.6 Hz, 1 H,
CONH), 5.46 (br, 2 H, NHOH), 4.61 (dd, 3J = 9.6 and 4.8
Hz, H, CHα Val), 4.21 (m, 2 H, OCH2CH3), 3.66 (q, 3J = 7.1
Hz, 1 H, CHα Ala), 2.23 (m, 1 H, CH-i-Pr), 1.29 (t, 3J = 7.0
Hz, 3 H, OCH2CH3), 1.26 (d, 3J = 7.1 Hz, 3 H, CH3 Ala),
0.97 (d, 3J = 6.9 Hz, 3 H, CH3-i-Pr), 0.91 (d, 3J = 6.9 Hz, 3
H, CH3-i-Pr). 13C NMR (75.5 MHz, CDCl3): δ = 174.0,
172.8, 62.2, 61.6, 56.7, 31.2, 19.2, 17.7, 15.6, 14.3. MS (CI):
b Method B: 3, Fmoc-AA1-Cl (1.03 equiv), NaHCO3 (3 equiv),
CH2Cl2, r.t., 2 h.
c Isolated yields. A hyphen indicates the reaction was not performed
under the current method.
d Reaction carried out at 40 °C.
Synlett 2003, No. 5, 671–674 ISSN 0936-5214 © Thieme Stuttgart · New York