K. Shimada et al. / Tetrahedron Letters 50 (2009) 6651–6653
6653
recovered after neutralization even after the reaction mixture was
Supplementary data
heated at higher temperature for prolonged time. These phenom-
ena suggested that 2 were deactivated by the Lewis acid due to their
basicity. All the results of reactions of 1, 2, or 20 with symmetrical
and unsymmetrical acetylenic dienophiles are presented in Table 1.
Further conversion of pyridines 4c–f bearing an ester group and
a phenyl group at the C-3 and C-4 positions, respectively, into the
corresponding 2-azafluorenones 5c–f was successfully achieved by
Friedel–Crafts cyclization using PPA.11 Treatment of 4g bearing a
phenyl group at the C-2 position with PPA in a similar manner gave
the corresponding 4-azafluorenone 6, that is, an alkyl analogue of
naturally occurring onychine possessing antimicrobial activity,13
in 74% yield. Therefore, a simple, short-step, and efficient entry
to the synthesis of derivatives and analogues of 2-aza- and 4-aza-
fluorenone alkaloids having biological and pharmacological activi-
ties would be delivered through a hetero-Diels–Alder methodology
starting from 2 or 20.
Supplementary data associated with this article can be found, in
References and notes
1. Hutton, J.; Potts, B.; Southern, D. F. Synth. Commun. 1979, 9, 789–797.
2. Boger, D. L. Tetrahedron 1983, 39, 2869–2939. and references cited therein.
3. (a) Karpeiskii, M. Y.; Florentev, V. L. Russ. Chem. Reu.. (Engl. Trawl.) 1969, 38,
540; (b) Turchi, I. J.; Dewar, M. J. S. Chem. Reu. 1975, 75, 389–437. and the
references cited therein; (c) Levin, J. I.; Weinreb, S. M. J. Am. Chem. Soc. 1983,
105, 1397–1398; (d) Thalhammer, F.; Wallfahrer, U.; Sauer, J. Tetrahedron Lett.
1988, 29, 3231–3234; (e) Seitz, G.; Wassmuth, H. Chemiker-Zeitung 1988, 112,
80–81; (f) Levin, J. I. Tetrahedron Lett. 1989, 30, 2355–2358; (g) Wilkie, G. D.;
Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.; Soenen, D. R.; Miller, M. M.;
Pollack, S.; Boger, D. L. J. Am. Chem. Soc. 2002, 124, 11292–11294; (h) Elgazwy,
A. S. S. H. Tetrahedron 2003, 59, 7445–7463. and the references cited therein.
C4H9
O
C4H9
COOMe
PPA (excess)
210 °C, 4 h
PPA (excess)
210 °C, 4 h
O
COOMe
R3
H3C
N
H3C
N
R1
N
R3
R1
N
4c (R1 = CH3, R3 = H)
5c (78%)11
5d (86%)
5e (92%)
5f (87%)
4g
6 (74%)
4d (R1 = C6H5, R3 = H)
4e (R1 = H, R3 = n-C4H9)
4f (R1 = CH3, R3 = n-C4H9)
Computational calculation estimated the unexpectedly high
frontier electron density on the tellurium atom along with a usual
orbital mode of azadiene moiety in the HOMO of 2a (R1 = CH3,
R2 = C6H5), while the carbon and the nitrogen atoms in 2a pos-
4. Takikawa, Y.; Hikage, S.; Matsuda, Y.; Higashiyama, K.; Takeishi, Y.; Shimada, K.
Chem. Lett. 1991, 2043–2046.
5. Cava, M. P.; Saris, L. E. J. Chem. Soc., Chem. Commun. 1975, 617–618.
6. (a) Campos-Vallette, M. M.; Clavijo, C. R. E. Spectrosc. Lett. 1985, 18, 759–766;
(b) Baldridge, K. K.; Gordon, M. S. J. Am. Chem. Soc. 1988, 110, 4204–4208; (c)
Cozzolino, A. F.; Gruhn, N. E.; Lichtenberger, D. L.; Vargas-Baca, I. Inorg. Chem.
2008, 47, 6220–6226.
sessed low electron density having only a little n–
p orbital over-
lapping of the sp2 carbon and nitrogen atoms with the lone pair
of the tellurium atom.14 Therefore, the high regioselectivity in
the formation of polysubstituted pyridines 4 from 2 and 3 would
be explained either by the usual orbital interaction between the
HOMO of the azadiene moiety of 2 and the LUMO of the acety-
lenic part of the dienophiles in the conventional concerted path-
way (path A) or by the stepwise pathway initiated by the
electrophilic reaction of dienophiles to the electron-rich tellurium
atom of isotellurazole ring in 2 forming intermediates C and D
(path B) as shown in Scheme 1. However, the 1H NMR monitoring
of the reaction of 2b (R1 = R2 = C6H5), possessing much lower
reactivity toward dienophiles than 2a, with DMAD (5 mol amt.)
in an NMR tube at 25 °C only revealed a gradual formation of
the signals of pyridine 4b in the reaction mixture along with a de-
crease in the formation of the signals of substrate 2b, and the sig-
7. (a) Bertini, V.; Lucchesini, F. Synthesis 1982, 681–683; (b) Neidlein, R.; Knecht,
D. Helv. Chim. Acta 1987, 70, 1076–1078; (c) Chivers, T.; Gao, X.; Parvez, M.
Inorg. Chem. 1996, 35, 9–15; (d) Morkved, E. H.; Lakshmikantham, M. V.; Cava,
M. P. Tetrahedron Lett. 1996, 37, 9149–9150; (e) Badyal, K.; Herr, M.;
McWhinnie, W. R.; Hamor, T. A.; Paxton, K. Phosphorus, Sulfur, Silicon, Relat.
Elem. 1998, 141, 221–229; (f) Rajagopal, D.; Lakshmikantham, M. V.; Morkved,
E. H.; Cava, M. P. Org. Lett. 2002, 4, 1193–1195; (g) Cozzolino, A. F.; Vargas-Baca,
I.; Mansour, S.; Mahmoudkhani, A. H. J. Am. Chem. Soc. 2005, 127, 3184–3190;
(h) Cozzolino, A. F.; Vargas-Baca, I. J. Organomet. Chem. 2007, 692, 2654–2657.
8. (a) Lucchesini, F.; Bertini, V. Synthesis 1983, 824–827; (b) Lucchesini, F.; Bertini,
V.; De Munno, A.; Pocci, M.; Picci, N.; Liguori, M. Heterocycles 1987, 26, 1587–
1593; (c) Pfeiffer, W.-D. Sci. Synth. 2002, 11, 1005–1020. and the references
cited therein.
9. (a) Shimada, K.; Oikawa, S.; Takikawa, Y. Chem. Lett. 1992, 1389–1392; (b)
Shimada, K.; Oikawa, S.; Nakamura, H.; Takikawa, Y. Chem. Lett. 1995, 135–136;
(c) Shimada, K.; Oikawa, S.; Nakamura, H.; Moro-oka, A.; Kikuchi, M.;
Maruyama, A.; Suzuki, T.; Kogawa, H.; Inoue, Y.; Gong, Y.; Aoyagi, S.;
Takikawa, Y. Bull. Chem. Soc. Jpn. 2005, 78, 899–905.
10. Shimada, K.; Moro-oka, A.; Maruyama, A.; Fujisawa, H.; Saito, T.; Kawamura, R.;
Kogawa, H.; Sakuraba, M.; Takata, Y.; Aoyagi, S.; Takikawa, Y.; Kabuto, C. Bull.
Chem. Soc. Jpn. 2007, 80, 567–577.
11. (a) Shiao, M.-J.; Liu, K.-H.; Lin, P.-Y. Heterocycles 1993, 36, 507–518; (b)
Sreekumar, R.; Rugmini, P.; Padmakumar, R. Synth. Commun. 1998, 28, 2071–
2075.
12. (a) Meyers, A. I.; Gabel, R. A. Heterocycles 1978, 11, 133–138; (b) Comins, D. L.;
Stroud, E. D.; Herrick, J. J. Heterocycles 1984, 22, 151–157.
13. (a) De Almeida, M. E. I.; Braz, F. R.; von Bulow, M. V.; Gottleib, O. R.; Maia, J. G. S.
Phytochemistry 1976, 15, 1186–1187; (b) Wu, Y. C. Heterocycles 1989, 29, 463–
475; (c) Chaves, M. H.; Santos, L. A.; Lago, J. H. G.; Roque, N. F. J. Nat. Prod. 2001,
64, 240–242; (d) Koyama, J.; Morita, I.; Kobayashi, N.; Osakai, T.; Usuki, Y.;
Taniguchi, M. Bioorg. Med. Chem. Lett. 2005, 15, 1079–1082.
nals assignable to possible bicyclic cycloadduct
B or ionic
intermediates C and/or D were not detected at all throughout
the NMR monitoring.
In conclusion, we found an efficient and versatile synthesis of
polysubstituted pyridines 4 starting from isotellurazoles 2 or
isotellurazole Te-oxides 20 via hetero-Diels–Alder pathway
as well as a facile and convenient conversion of 4 bearing an ester
group at the C-3 position into 2-aza- and 4-azafluoreonone alka-
loid skeletons. Further applications of the new synthetic protocol
to various polycyclic alkaloid ring systems having substituted
and fused pyridine cores are now in progress in our laboratory.
14. Theoretical calculation was carried out using the B3LYP/6-311G (d, p) for C, N,
H and 3-21G (d) for Te level of theory.