3200
J. H. M. Lange et al. / Tetrahedron Letters 52 (2011) 3198–3200
7. Tsuji, S.; Kawano, S.; Tsujii, M.; Kawai, N.; Gunawan, E. S.; Sun, W. H.; Hori, M.
Arzneimittelforschung 2001, 51, 46–50.
a
N
8. Hirsh, A. J.; Sabater, J. R.; Zamurs, A.; Smith, R. T.; Paradiso, A. M.; Hopkins, S.;
Abraham, W. M.; Boucher, R. C. J. Pharmacol. Exp. Ther. 2004, 311, 929–938.
9. Shi, Y.; Li, C.; O’Connor, S. P.; Zhang, J.; Shi, M.; Bisaha, S. N.; Wang, Y.; Sitkoff,
D.; Pudzianowski, A. T.; Huang, C.; Klei, H. E.; Kish, K.; Yanchunas, J., Jr.; Liu, E.
C.-K.; Hartl, K. S.; Seiler, S. M.; Steinbacher, T. E.; Schumacher, W. A.; Atwal, K.
S.; Stein, P. D. Bioorg. Med. Chem. Lett. 2009, 19, 6882–6889.
N
O
Me
Me
N
N
N
S Me
H
10. (a) Janero, D. R.; Makriyannis, A. Expert Opin. Emerg. Drugs 2009, 14, 43–65; (b)
Lange, J. H. M.; Kruse, C. G. Chem. Rec. 2008, 8, 156–168; (c) Högenauer, E. K.
Exp. Opin. Ther. Patents 2007, 17, 1457–1476; (d) Lange, J. H. M.; Kruse, C. G.
Drug Discovery Today 2005, 10, 693–702; (e) Lange, J. H. M.; Kruse, C. G. Curr.
Opin. Drug Discov. Devel. 2004, 7, 498–506.
6a
4a
Scheme 2. (a) C6H5CONHNa, THF, reflux, 22 h (12%).
11. (a) Lange, J. H. M.; Coolen, H. K. A. C.; van der Neut, M. A. W.; Borst, A. J. M.;
Stork, B.; Verveer, P. C.; Kruse, C. G. J. Med. Chem. 2010, 53, 1338–1346; (b)
Lange, J. H. M.; den Hartog, A. P.; van der Neut, M. A. W.; Kruse, C. G. Bioorg.
Med. Chem. Lett. 2009, 19, 5675–5678; (c) Lange, J. H. M.; van Stuivenberg, H.
H.; Veerman, W.; Wals, H. C.; Stork, B.; Coolen, H. K. A. C.; McCreary, A. C.;
Adolfs, T. J. P.; Kruse, C. G. Bioorg. Med. Chem. Lett. 2005, 15, 4794–4798.
12. Lange, J. H. M.; Coolen, H. K. A. C.; van Stuivenberg, H. H.; Dijksman, J. A. R.;
Herremans, A. H. J.; Ronken, E.; Keizer, H. G.; Tipker, K.; McCreary, A. C.; Veerman,
W.; Wals, H. C.; Stork, B.; Verveer, P. C.; den Hartog, A. P.; de Jong, N. M. J.; Adolfs,
T. J. P.; Hoogendoorn, J.; Kruse, C. G. J. Med. Chem. 2004, 47, 627–643.
13. Zhang, J.; Shi, Y.; Stein, P.; Atwal, K.; Li, C. Tetrahedron Lett. 2002, 43, 57–59.
14. (a) Shi, Y.; Li, C.; O’Connor, S. P.; Zhang, J.; Shi, M.; Bisaha, S. N.; Wang, Y.;
Sitkoff, D.; Pudzianowski, A. T.; Huang, C.; Klei, H. E.; Kish, K.; Yanchunas, J.;
Liu, E. C.-K.; Hartl, K. S.; Seiler, S. M.; Steinbacher, T. E.; Schumacher, W. A.;
Atwal, K. S.; Stein, P. D. Bioorg. Med. Chem. Lett. 2009, 19, 6882–6889; (b)
Martin, N. I.; Liskamp, R. M. J. J. Org. Chem. 2008, 73, 7849–7851; (c) Shepherd,
J.; Gale, T.; Jensen, K. B.; Kilburn, J. D. Chem. Eur. J. 2006, 12, 713–720; (d)
Gluszok, S.; Goossens, L.; Depreux, P.; Hénichart, J.-P. Tetrahedron Lett. 2006, 47,
6087–6090; (e) Jensen, K. B.; Braxmeier, T. M.; Demarcus, M.; Frey, J. G.;
Kilburn, J. D. Chem. Eur. J. 2002, 8, 1300–1309; (f) Zhang, J.; Shi, Y. Tetrahedron
Lett. 2000, 41, 8075–8078; (g) Bonnat, M.; Bradley, M.; Kilburn, J. D.
Tetrahedron Lett. 1996, 37, 5409–5412; (h) Deprez, P.; Vevert, J.-P. Synth.
Commun. 1996, 4299–4310; (i) Himbert, G.; Schwickerath, W. Liebigs Ann.
Chem. 1982, 12, 2105–2118.
the reaction procedure in these two cases. The reaction mixtures
obtained which contained crude 5l and 5m were diluted with a
small amount of ethyl acetate and the remaining solid material
(mostly KHCO3 salt) was removed by filtration. Subsequently, the
filtrate was concentrated and subjected to flash chromatographic
purification. This specific modification led to a significant increase
in chemical yield for both 5l (95%) and 5m (70%), respectively.
In general, the atom-efficiencies of the one-pot conversions of 1
into 5 were high. In our set of compounds, 5a–5p the atom-effi-
ciency ranged from 54% for the smallest molecule 5l to 74% for
the largest compound 5d.
In addition, we attempted to prepare the acylguanidine 6a via
an analogous one-pot protocol by reaction of the in situ formed
4a with benzamide. However, the desired product 6a was not
formed in this reaction which could be rationalized by invoking
insufficient nucleophilicity of the carboxamide under the neutral
reaction conditions. After a brief survey of the reaction conditions
we succeeded in preparing 6a by the addition of three molar equiv-
alents of benzamide sodium salt (prepared from benzamide and
NaH in THF) to a solution of in situ formed 4a in anhydrous THF
(Scheme 2). However, this procedure furnished 6a in a disappoint-
ingly low 12% yield. The use of potassium hexamethyldisilazide
(KHDMS) as an alternative base did not improve the yield in this
particular reaction. Since the analogous reaction of 4a with 1-car-
bamylpiperidine did not proceed at all, it was decided to abandon
this alternative synthetic approach for the synthesis of acylguani-
dine derivatives.
15. (a) Qin, C.; Li, J.; Fan, E. Synlett 2009, 2465–2468. and references cited therein;
(b) Flemer, S.; Madalengoitia, J. S. Synthesis 2007, 1848–1860. and references
cited therein.
16. Lange, J. H. M.; Sanders, H. J.; van Rheenen, J. Tetrahedron Lett. 2011, 52, 1303–
1305.
17. Sheldon, R. A. Pure Appl. Chem. 2000, 72, 1233–1246.
18. Yields refer to isolated pure products unless otherwise noted and were not
optimized. Selected data for compounds 5a, 5b, and 6a. Synthesis of compound
5a: The one-pot experiment was carried out in oven-dried glassware under a
nitrogen atmosphere. A solution of pyrrolidine (0.36 g, 5.00 mmol) in CH3CN
(3 ml) was added dropwise to a stirred solution of methyl isothiocyanate
(0.47 ml, 5.50 mmol) in CH3CN (10 ml, anhydrous puresolve™) under cooling in
an ice-bath to keep the reaction temperature below 10 °C. The ice-bath was
removed and stirring was continued at room temperature for 2 h to furnish a
yellow-colored solution of the intermediate 2a. The nitrogen flow was stopped
(to prevent evaporation of volatile CH3I in the subsequent reaction), a CaCl2 tube
was fitted for protection against moisture and CH3I (0.62 ml, 10.0 mmol) was
added in one portion. Stirring was continued at room temperature for 18 h after
which TLC analysis [eluent: EtOAc/hexanes 1:1 (v/v)] showed full conversion of
2a into 3a. The solvent and excess CH3I were removed in vacuo and CH3CN
(10 ml) was added in order to dissolve the resulting dark-yellow solid. KHCO3
(0.70 g, 7.00 mmol) and benzenesulfonamide (0.83 g, 5.25 mmol) were added
successively and the resulting mixture was stirred at reflux temperature for 22 h.
After cooling to room temperature, 2 N NaOH was added and the mixture was
extracted with EtOAc (3 ꢁ 20 ml). The combined organic layers were washed
with brine (20 ml), dried (Na2SO4), and evaporated in vacuo to give a pale brown
oil. The crude 5a was purified by flash chromatography (gradient elution: EtOAc/
hexanes 1:1, EtOAc/hexanes 3:1, EtOAc) to furnish N-(benzenesulfonyl)-N0-
methylpyrrolidine-1-carboximidamide (5a) as a white solid (1.09 g, 83% yield).
Melting point: 95–97 °C. 1H NMR (400 MHz, CDCl3): d 1.82–1.92 (m, 4H), 2.85 (d,
J = 5.3 Hz, 3H), 3.43–3.50 (m, 4H), 6.77 (br s, 1H), 7.40–7.50 (m, 3H), 7.90 (dd,
J = 8 and 2 Hz, 2H). 13C NMR (100 MHz, CDCl3): d 25.32, 31.58, 49.20, 125.86,
128.52, 131.10, 144.67, 158.34. HR-MS (ES+): calcd for C12H18N3O2S (M+H)+
In conclusion, an efficient one-pot procedure for the atom-
efficient production of a variety of sulfonylguanidines and sulfa-
moylguanidines under mild reaction conditions is described. The
outlined synthetic methodology has a broad applicability, but ste-
rically demanding amines R1R2NH appear to limit the scope.
Acknowledgments
Willem Gorter and Hugo Morren are gratefully acknowledged
for analytical support.
Supplementary data
Supplementary data (selected analytical data for compounds
5c–5e and 5g–5p) associated with this article can be found, in
268.1120;
found:
268.1105.
N0-Benzyl-N-[(4-chlorobenzene)sulfonyl]
piperidine-1-carboximidamide (5b). Melting point: 136–138 °C. 1H NMR
(400 MHz, CDCl3): d 1.53–1.67 (m, 6H), 3.30–3.37 (m, 4H), 4.26 (d, J = 6 Hz,
2H), 7.01 (br t, J = 6 Hz, 1H), 7.15–7.21 (m, 2H), 7.30–7.38 (m, 5H), 7.65 (br d,
J = 8.6 Hz, 2H). 13C NMR (100 MHz, CDCl3): d 24.19, 25.57, 48.93, 48.93, 49.99,
127.40, 127.59, 128.11, 128.80, 128.98, 136.91, 137.49, 142.39, 160.05. HR-MS
References and notes
1. Saczewski, F.; Balewski, L. Expert Opin. Ther. Patents 2009, 19, 1417–1448.
2. Berlinck, R. G. S.; Burtoloso, A. C. B.; Trindade-Silva, A. E.; Romminger, S.;
Morais, R. P.; Bandeira, K.; Mizuno, C. M. Nat. Prod. Rep. 2010, 27, 1871–1907.
3. Zimmerman, S. C. Top. Curr. Chem. 1993, 165, 71–102.
4. (a) Shepherd, J.; Gale, T.; Jensen, K. B.; Kilburn, J. D. Chem. Eur. J. 2006, 12, 713–
720; (b) Bonnat, M.; Bradley, M.; Kilburn, J. D. Tetrahedron Lett. 1996, 37, 5409–
5412.
(ES+): calcd for
C
19H23N3O2S35Cl (M+H)+ 392.1200; found: 392.1200. N-
[(Methylimino)(pyrrolidin-1-yl)methyl]benzamide (6a). Melting point: 199–
202 °C. 1H NMR (400 MHz, CDCl3): d 1.92–1.99 (m, 4H), 2.97 (d, J = 4.8 Hz, 3H),
3.52–3.59 (m, 4H), 7.10–7.33 (m, 1H), 7.34–7.44 (m, 3H), 8.17 (br d, J = 8 Hz, 2H).
13C NMR (100 MHz, CDCl3): d 25.39, 30.34, 48.10, 127.68, 128.87, 130.34, 138.82,
162.31. HR-MS (ES+): calcd for C13H18N3O (M+H)+ 232.1450; found: 232.1463.
19. Henderson, W. A.; Schultz, C. J. J. Org. Chem. 1962, 27, 4643–4646.
5. Jensen, K. B.; Braxmeier, T. M.; Demarcus, M.; Frey, J. G.; Kilburn, J. D. Chem. Eur.
J. 2002, 8, 1300–1309.
6. Thai, K.; Gravel, M. Tetrahedron: Asymmetry 2010, 21, 751–755.