GSK-3â also plays a central role in the Wnt/â-catenin/
TCF cell-signaling pathway.3b,4 Wnts are secreted glycopro-
teins that bind to the Frizzled/Frizzled-2-type receptors on
the surfaces of cells to activate the protein Dishevelled (Dv1),
which inhibits GSK-3â.4 Active Wnt signaling causes the
up-regulation and accumulation of free cytosolic â-catenin,
which subsequently translocates to the nucleus where it
complexes with members of the TCF (T-cell factor) family
of transcription factors, to activate the expression of genes
involved in cell growth and proliferation. Target genes for
â-catenin/TCF-mediated transcription include include c-myc,5
cyclin D1,6,7 matrilysin,8 TCF1,9 the multidrug resistance 1
(MDR1) gene,10 c-jun, fra-1, the urokinase-type plasminogen
activator receptor,11 and osteopontin.12 Another recently
confirmed target is the peroxisome proliferator-activated
receptor (PPAR) δ-gene.13
Scheme 1. Retrosynthetic Planning for (-)-Agelastatin A
It is now well established that functionally inactivating
mutations to GSK-3â cause an accumulation of â-catenin
and that this in turn activates certain tumorigenic promoters
involved in melanoma and colon cancer such as TCF4.4 The
observation that (-)-agelastatin A can selectiVely inhibit
GSK-3â and yet still function as a powerful antitumor agent
is therefore quite remarkable and makes this a molecule of
enormous biological interest.
Importantly, this observation suggests that it might be
possible to design new and more potent small-molecule
GSK-3â inhibitors that will be highly selective and non-
tumorigenic. Inhibitors of deregulated GSK-3â activity could
potentially serve as drugs14 for treating neurodegenerative
diseases such as AD or for preventing neuronal apoptosis
after stroke. They might also function as novel insulin
mimetics, because insulin activates a protein cascade (PI3-
Kinase/PKB) that inhibits GSK-3â.14b It was with the
preparation of novel GSK-3â inhibitors in mind that we
recently embarked on an enantioselective total synthesis of
(-)-1 and its analogues.
At the outset of our studies, Weinreb’s group had already
published an elegant total synthesis of racemic agelastatin
A15 that employed a novel hetero Diels-Alder cycloaddition
reaction and a Sharpless/Kresze allylic amination16 sequence
for assembly of the cyclopentane core. Feldman and Saunders
subsequently reported an enantioselective route to (-)-
agelastatins A and B that exploited an unusual vinylcarbene
C-H insertion reaction for carbocycle construction.17
O’Brien’s group at the University of York18 have also been
active in this area, having reported a concise asymmetric
synthesis of an N-tosylated C-ring fragment that could prove
to be useful for a future total synthesis of the natural product.
(2) Meijer, L.; Thunnissen, A.-M. W. H.; White A. W.; Garnier, M.;
Nikolic, M.; Tsai, L.-H.; Walter, J.; Cleverley, K. E.; Salinas, P. C.; Wu,
Y.-Z.; Biernat, J.; Mandelkow, E.-M.; Kim, S.-H.; Pettit, G. R. Chem. Biol.
2000, 7, 51.
(3) (a) Lovestone, S.; Reynolds, C. H.; Latimer, D.; Davis, D. R.;
Anderton, B. H.; Gallo, J.-M.; Hanger, D.; Mulot, S.; Marquardt, B. Curr.
Biol. 1994, 4, 1077. (b) Harwood, A. J. Cell 2001, 105, 821.
(4) For some useful reviews and references on â-catenin/Wnt signaling,
see: (a) Morin, P. J. BioEssays 1999, 21, 1021. (b) Plakis, P. Genes DeV.
2000, 14, 1837. (c) Sharpe, C.; Lawrence, N.; Martinez Aris, A. BioEssays
2001, 23, 311. (d) Chung, D. C. Gastroenterology 2000, 119, 854.
(5) He, T. C.; Sparks, A. B.; Rago, C.; Hermeking, H.; Zawel, L.; da
Costa, L. T.; Morin, P. J.; Vogelstein, B.; Kinzler, K. W. Science 1998,
281, 1509.
In our approach to (-)-agelastatin A (Scheme 1), we hoped
to prepare one of Weinreb’s advanced intermediates (2) in
(6) Tetsu, O.; McCormick, F. Nature 1999, 398, 422.
(7) Shutman, M.; Zhurinsky, J.; Simcha, I.; Albanes, C.; D’Amico, M.;
Pestell, R.; Ben-Ze’ev, A. Proc. Nat. Acad. Sci. U.S.A. 1999, 96, 5522.
(8) (a) Crawford, H. C.; Fungleton, B. M.; Rudolph-Owen, L. A.; Goss,
K. J.; Rubinfeld, B.; Polakis, P.; Matrisian, L. M. Oncogene 1999, 18, 2883.
(b) Brabletz, T.; Jung, A.; Dag, S.; Hlubek, F.; Kirchner, T. Am. J. Pathol.
1999, 155, 1033.
(9) Roose, J.; Huls, G.; van Beest, M.; Moerer, P.; van der Horn, K.;
Goldschmeding, R.; Lotgenberg, T.; Clevers, H. Science 1999, 85, 1923.
(10) Yamada, T.; Takaoka, A. S.; Naishiro, Y.; Hayashi, R.; Maruyama,
K.; Maesawa, C.; Ochiai, A.; Hirohashi, S. Cancer Res. 2000, 60, 4761.
(11) Mann, B.; Gelos, M.; Siedow, A.; Hanski, M. L.; Gratchev, A.;
Ilyas, M.; Bodmer, W. F.; Moyer, M. P.; Rieken, E. O.; Buhr, H. J.; Hanski,
C. Proc. Natl. Acad. Sci U.S.A. 1999, 96, 1603.
(14) For some recent reviews and pertinent references on the potential
of GSK-3 inhibitors as drugs, see: (a) Martinez, A.; Castro, A.; Dorronsoro;
Alonso, M. Med. Res. ReV. 2002, 22, 373. (b) Eldar-Finkelman, H. Trends
Mol. Med. 2002, 8, 126. (c) Witherington, J.; Bordas, V.; Haigh, D.; Hickey,
D. M. B.; Ife, R. J.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Ward,
R. W. Bioorg. Med. Chem. Lett. 2003, 13, 1581.
(15) (a) Stein, D.; Anderson, G. T.; Chase, C. E.; Koh, Y-h.; Weinreb,
S. M. J. Am. Chem. Soc. 1999, 121, 9574. (b) Anderson, G. T.; Chase, C.
E.; Koh, Y.-h.; Stein, D.; Weinreb, S. M. J. Org. Chem. 1998, 63, 7594.
(16) (a) Sharpless, K. B.; Hori, T. J. Org. Chem. 1976, 41, 176. (b)
Bussas, R.; Kresze, G. Liebigs Ann. Chem. 1980, 629.
(17) (a) Feldman, K. S.; Saunders, J. C. J. Am. Chem. Soc. 2002, 124,
9060. (b) Feldman, K. S.; Saunders, J. C.; Laci Wrobleski, M. J. Org. Chem.
2002, 67, 7096.
(12) El-Tanani, M. K.; Barraclough, R.; Wilkinson, M. C.; Rudland, P.
S. Oncogene 2001, 20, 1793.
(13) He, T. C.; Chan, T. A; Vogelstein, B.; Kinzler, K. W. Cell 1999,
99, 335.
(18) Baron, E.; O’Brien, P.; Towers, T. D. Tetrahedron Lett. 2002, 43,
723.
2928
Org. Lett., Vol. 5, No. 16, 2003