A. M. Taylor, S. L. Schreiber / Tetrahedron Letters 50 (2009) 3230–3233
OMe
3233
I
Acknowledgement
I
OMe
H
N
+ CuI
- HI
N
Cu
The NIGMS-sponsored Center of Excellence in Chemical Method-
ology and Library Design (Broad Institute CMLD; P50 GM069721)
funded this research. S.L.S. is a Howard Hughes Medical Institute
Investigator.
CO2Me
O
MeO
Figure 1. Proposed chelate to explain low reactivity of substrates in metal-
mediated coupling reactions.
Supplementary data
Related intramolecular, metal-catalyzed reactions have been re-
ported to occur in high yield at room temperature.21,22 None of the
reported substrates involved amines substituted in the a-position
Representative experimental details for the synthesis and the
characterization data for key intermediates are provided. Supple-
mentary data associated with this article can be found, in the on-
with coordinating groups, however, which led to our suspicion that
the amines used in the experiments summarized in Table 2 form a
stable five-membered metal chelate that proceeded with the oxi-
dative insertion reaction only at elevated temperature (Fig. 1). If
so, changing the carbomethoxy substituent to one that cannot
form such a chelate would be expected to increase the efficiency
of this reaction and would prevent the epimerization of the neigh-
boring stereocenter.
References and notes
1. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Disc.
2007, 6, 29.
2. Schreiber, S. L. Nature 2009, 457, 153.
3. Schreiber, S. L. Science 2000, 287, 1964.
4. Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46.
5. Nielsen, T. E.; Schreiber, S. L. Angew. Chem., Int. Ed. 2008, 47, 48.
6. Nielsen, I. M. B. J. Phys. Chem. A 1998, 102, 3193.
7. Park, G.; Kim, S.-C.; Kang, H.-Y. Bull. Korean Chem. Soc. 2005, 26, 1339.
8. Pineschi, M.; Bertolini, F.; Crotti, P.; Macchia, F. Org. Lett. 2006, 8, 2627.
9. Hu, X. E. Tetrahedron Lett. 2002, 43, 5315.
10. Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612.
11. Unthank, M. G.; Hussain, N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2006, 45,
7066.
12. Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744.
13. Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326.
14. Legters, J.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 1989, 30, 4881.
15. Davoli, P.; Spaggiari, A.; Ciamaroni, E.; Forni, A.; Torre, G.; Prati, F. Heterocyc.
2004, 63, 2495.
In summary, here we describe studies on the use of aziridines as
components of a nascent build/couple/pair synthetic strategy. Azir-
idines were prepared with aryl substituents to direct ring opening
with trimethylsilylazide and with different alcohols in the pres-
ence of BF3ÁOEt2. These products were substrates for a thermal
[3+2] cycloaddition, an iodoamination, and an intramolecular aryl-
amination, respectively. The intermediates and products synthe-
sized in these studies will be submitted for inclusion in the
Broad Institute screening collection. Although the yields of some
of these reactions are modest, this work demonstrates that aziri-
dines can be prepared with substituents that direct subsequent
additions and allow for intramolecular cyclizations to form struc-
turally diverse, rigid, and functionalized heterocycles. Incorpora-
tion of a variety of functional groups and building blocks into
this aziridine system should allow for a number of other pairing
reactions to afford heterocycles having different ring sizes and
properties.
16. Weber, F. G.; Bandlow, C. Z. Chem. 1973, 13, 467.
17. Chandrasekhar, M.; Sekar, G.; Singh, V. K. Tetrahedron Lett. 2000, 41, 10079.
18. Li, Z.; Fernandez, M.; Jacobsen, E. N. Org. Lett. 1999, 1, 1611.
19. Bodenan, J.; Chanet-Ray, J.; Vessiere, R. Synthesis 1992, 288.
20. Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742.
21. Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 1028.
22. Yamada, K.; Kubo, T.; Tokuyama, H.; Fukuyama, T. Synlett 2002, 231.