M.K. Agrawal et al. / Tetrahedron 65 (2009) 2791–2797
2797
reduced pressure to get crude product, which was purified by
Supplementary data
column chromatography on silica gel to afford the pure 1-(2-iodo-
1-methoxyethyl)-4-methyl-benzene (2.23 g, 8.09 mmol) in 95%
yield. Similar procedure was employed for synthesis of bromo
methyl ethers listed in Table 2 using bromide/bromate with re-
quired quantity of acid.
Electronic supplementary information (ESI) on 1H and 13C NMR
data, elemental analysis (of solid products) and NMR spectra/GC–
MS of synthesized compounds is available free of charge. Supple-
mentary data associated with this article can be found in the online
4.4. General procedure for synthesis of halo acetates [2-iodo-
1-phenyl-ethyl ester (entry 2, Table 3)]
References and notes
Styrene (1.00 g, 9.61 mmol) and acetic acid (20 mL) were taken in
50 mL round bottomed flask and 1.1 equiv of solid KI/KIO3
[6.92 mmol KIþ3.55 mmol KIO3] added in portions over a period of
30 min under vigorous magnetic stirring at room temperature. The
progress of the reaction was monitored by TLC. After completion of
the reaction (3.5 h) the solvent was removed at 60–65 ꢂC under
reduced pressure, the crude residue was treated with water and the
product extracted with CH2Cl2 (25 mLꢁ3). The combined organic
layers were washed with dilute solutions of NaHCO3, Na2S2O3 and
brine, followed by drying over anhydrous Na2SO4 and concentration
under reduced pressure to get acetic acid 2-iodo-1-phenyl-ethyl
ester (2.73 g, 9.41 mmol) in 98% yield. Similar procedure was
employed for synthesis of other iodo acetates. The same procedure
was also followed for the syntheses of bromoacetates listed in Table
3 using the corresponding bromide/bromate salt in acetic acid.
1. Phukan, P.; Chakraborty, P.; Kataki, D. J. J. Org. Chem. 2006, 71, 7533.
2. (a) Stamatov, S. D.; Stawinski, J. Eur. J. Org. Chem. 2008, 2635; (b)
Moriuchi, T.; Yamaguchi, M.; Kikushima, K.; Hirao, T. Tetrahedron Lett. 2007, 48,
15; (c) Urankar, D.; Rutar, I.; Modec, B.; Dolenc, D. Eur. J. Org. Chem. 2005, 2349.
3. Chengfeng, Y.; Jean’ne, M. S. J. Org. Chem. 2004, 69, 8561.
4. Yoshida, M.; Mochizuki, H.; Suzuki, T.; Kamigata, N. Bull. Chem. Soc. Jpn. 1990,
63, 3704.
5. Almeida, L. S. de.; Esteves, P. M.; Mattos, M. C. S. de. Synlett 2006, 1515.
6. Hajra, S.; Karmakar, A.; Bhowmick, M. Tetrahedron: Asymmetry 2006, 17, 210.
7. (a) Hajra, S.; Bhowmick, M.; Karmakar, A. Tetrahedron Lett. 2005, 46, 3073; (b)
Smietna, M.; Gouverneur, V.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 193; (c)
Frederick, C.; Overman, L. E. J. Am. Chem. Soc. 2005, 8, 2594.
8. Taneja, S. C.; Sethi, V. K.; Andotra, S. S.; Koul, S.; Qazi, G. N. Synth. Commun.
2005, 35, 2297.
9. (a) Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 23, 4501; (b) Sromek,
A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 30, 10500; (c) Sels, B. F.;
Vos, D. E. D.; Jacobs, P. A. J. Am. Chem. Soc. 2001, 123, 8350.
10. (a) Heasley, V. L.; Gipe, R. K.; Martin, J. L.; Wiese, H. C.; Oakes, M. L.; Shellhamer,
D. F. J. Org. Chem. 1983, 19, 3195; (b) Heasley, V. L.; Frye, C. L.; Heasley, G. E.;
Martin, K. A.; Redfield, D. A.; Wilday, P. S. Tetrahedron Lett. 1970, 18, 1573.
11. (a) Anseverino, A. M.; Mattos, M. C. S. de. Synthesis 1998, 11; (b) Middleton, D. S.;
Simpkins,N.S.Synth. Commun.1989,19,21;(c)Prevost,C.Compt. Rend.1937,204,700.
12. Barluenga, J.; Gonzalez, J. M.; Campos, P. J.; Asensio, G. Angew. Chem., Int. Ed.
Engl. 1985, 24, 319.
13. Yadav, A. K.; Singh, B. K.; Singh, N.; Tripathi, R. P. Tetrahedron Lett. 2007, 48, 6628.
14. Barluenga, J.; Rodriguez, M. A.; Campos, P. J. J. Chem. Soc., Perkin Trans. 1 1990, 2807.
15. Horiuchi, C. A.; Satoh, J. Y. J. Chem. Soc., Chem. Commun. 1982, 671.
16. (a) Wilson, C. V. Org. React.1957, 9, 332; (b) Gunstone, F. D.; Raphael, R. A.; Taylor,
E. C.; Wynberg, H. Advances in Organic Chemistry: Methods and Results; Inter-
science: New York, NY, 1960; Vol. 1; p 103.
17. (a) Cambia, R. C.; Noall, W. I.; Potter, G. J.; Rutedge, P. S.; Woodgate, P. D. J. Chem.
Soc., Perkin Trans. 1 1977, 226; (b) Smith, M. B.; March, J. March’s Advanced Or-
ganic Chemistry: Reactions, Mechanisms and Structure, 6th ed.; Wiley: New York,
NY, 2007; p 1152.
4.5. General procedure for one pot synthesis of rose oxide
Citronellol (1.56 g, 10.0 mmol) and MeOH (20 mL) were taken
in 50 mL round bottomed flask and the contents were stirred at
5–10 ꢂC. To the above solution, 5.5 mmol of concd H2SO4 was added
slowly followed by the addition of 1.1 equiv of solid KI/KIO3
[7.2 mmol KIþ3.7 mmol KIO3] in portions over 30 min under vigor-
ous stirring at 5–10 ꢂC. The progress of the reaction was monitored
by TLC and no starting material was left after 2.5 h. Solid KOH (0.9 g,
16.0 mM)wasthenaddedintothesameflaskunderstirringandonce
dissolution was complete the contents were refluxed for 2.5 h. The
solvent was removed under reduced pressure. 10 mL of hexane and
10.0 mL of 1.2 N HCl were then added into the flask and the contents
stirred at 0 ꢂC for 3 h. The organic and aqueous layers were separated
and aqueous layer was extracted once with 25 mL of dichloro-
methane. The combined organic layers were dried over anhydrous
Na2SO4 and concentrated under reduced pressure to obtain crude
product, which was purified by column chromatography on silica gel
to obtain 1.263 g (8.20 mmol, 82% yield) rose oxide. The product was
characterized by 1H and 13C NMR, IR and GC–MS.
18. Bedekar, A. V.; Nair, K. B.; Soman, R. Synth. Commun. 1994, 24, 2299.
19. Mahajan, V. A.; Shinde, P. D.; Gajare, A. S.; Karthikeyan, M.; Wakharkar, R. D.
Green Chem. 2002, 4, 325.
20. Cornforth, J. W.; Green, D. T. J. Chem. Soc. C 1970, 846.
21. Masuda, H.; Takase, K.; Nishio, M.; Hasegawa, A.; Nishiyama, Y.; Ishii, Y. J. Org.
Chem. 1994, 59, 5550.
22. Dushman, S. J. Phys. Chem. 1904, 8, 453.
23. (a) Field, R. J.; Koros, E.; Noyes, R. M. J. Am. Chem. Soc. 1972, 94, 8649; (b) Ep-
stein, I. R. Nature 2008, 455, 1053.
24. Cortes, C. E. S.; Faria, R. B. Inorg. Chem. 2004, 43, 1395.
25. (a) Schmitz, G. Phys. Chem. Chem. Phys. 1999, 1, 1909; (b) Schmitz, G. Phys. Chem.
Chem. Phys. 2000, 2, 4041.
26. Taube, H.; Dodgen, H. J. Am. Chem. Soc. 1949, 71, 3330.
27. Adimurthy, S.; Ghosh, S.; Patoliya, P. U.; Ramachandraiah, G.; Agrawal, M.;
Gandhi, M. R.; Upadhyay, S. C.; Ghosh, P. K.; Ranu, B. C. Green Chem. 2008, 10, 232.
28. Adimurthy, S.; Ramachandraiah, G.; Ghosh, P. K.; Bedekar, A. V. Tetrahedron Lett.
2003, 44, 5099.
29. Ramachandraiah, G.; Ghosh, P. K.; Mehta, A. S.; Adimurthy, S.; Jethva, A. D.;
Vaghela. S. S. U.S. Patent 6,740,253, 2004.
30. (a) Adimurthy, S.; Ramachandraiah, G.; Ghosh, P. K. Synth. Commun. 2007, 37,
1579; (b) Adimurthy, S.; Ramachandraiah, G.; Bedekar, A. V.; Ghosh, S.; Ranu, B.
C.; Ghosh, P. K. Green Chem. 2006, 8, 916.
31. (a) Sumrell, G.; Wyman, B. M.; Howell, R. G.; Haewey, M. C. Can. J. Chem. 1964,
42, 2710; (b) Zanger, M.; Rabinowitz, J. L. J. Org. Chem. 1975, 40, 248; White, E. P.;
Robertson, P. W. J. Chem. Soc. 1939, 1509.
4.6. Computational methods
All calculations were performed with the Spartan’ 06 version,
using MP2 electron correlated method.34 Pseudopotential (LACVP
)
*
and 6-31G
basis sets were used for the calculations.35 All species
*
were fully optimized with these basis sets, and harmonic vibra-
tional frequency calculations were used to confirm that the opti-
mized structures were minima, as characterized by positive
vibrational frequencies. The natural population analysis was per-
formed with NBO method.36
32. Optimized geometry of trans 2-bromo-1-methoxy indane at MP2 level of
theory exhibits a dihedral angle of 78ꢂ between the 1,2-vicinal protons. Using
the Karplus equation, the coupling constant is computed to be 0.105 Hz, i.e., the
value is negligible as observed experimentally.
Acknowledgements
33. Anand, N.; Kapoor, M.; Koul, S.; Taneja, S. C.; Sharma, R. L.; Qazi, G. N. Tetra-
hedron: Asymmetry 2004, 15, 3131.
We thank Dr. P. Paul, Mr. V. P. Boricha, Mr. H. Brahmbhatt and Mr.
V. Agrawal of our Analytical Division for analyses and Dr. A. Das for
a sample of the chalcone used in Entry 23/24 of Table 2. We are also
grateful to Dr. P. Ray and Dr. B. C. Ranu for helpful discussions and to
the referees for their valuable suggestions. M.K.A. wishes to thank
UGC, New Delhi for support under UGC-NET fellowship.
34. (a) Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular
Orbital Theory; Wiley: New York, NY, 1986; Spartan’ 06. Wavefunction: Irvine,
CA; (b) Hehre, W. J. A Guide to Molecular Mechanics and Quantum Chemical
Calculations, 2nd ed.; Wavefunction: Irvine, CA, 2006; (c) Carpenter, J. E.;
Weinhold, F. J. Mol. Struct. (Theochem) 1988, 169, 41.
35. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
36. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.