ChemComm
Communication
Table 2 Chalcogen bond characteristics of the (2ꢀbipy) and (3ꢀbipy)
3 P. Metrangolo, G. Resnati, T. Pilati and S. Biella, Struct. Bonding,
2008, 126, 105.
co-crystals
4 R. B. Walsh, C. W. Padgett, P. Metrangolo, G. Resnati, T. W. Hanks
and W. T. Pennington, Cryst. Growth Des., 2001, 1, 165.
5 For one most recent example see: T. A. Schau, R. Sure, F. Hampel,
S. Grimme and M. Kivala, Chem. – Eur. J., 2017, 23, 5687.
6 T. Clark, M. Hennemann, J. S. Murray and P. Politzer, J. Mol. Model.,
2007, 13, 291.
Seꢀ ꢀ ꢀN (Å)
2.830(3)
2.897(4)
C–Seꢀ ꢀ ꢀN (1)
177.2(1)
176.7(1)
Seꢀ ꢀ ꢀN–Cg (1)
165.0(1)
165.9(1)
(2ꢀbipy)
(3ꢀbipy)
7 J. S. Murray, P. Lane, T. Clark and P. Politzer, J. Mol. Model., 2007,
13, 1033; P. Politzer, J. S. Murray and T. Clark, Phys. Chem. Chem.
Phys., 2013, 15, 11178; P. Politzer, J. S. Murray, G. V. Janjic and
S. D. Zaric, Crystals, 2014, 4, 12; J. S. Murray, P. Lane and P. Politzer,
J. Mol. Model., 2009, 15, 723.
8 E. Alikhani, F. Fuster, B. Madebene and S. J. Grabowski, Phys. Chem.
Chem. Phys., 2014, 16, 2430.
9 Y. Berrueta Martinez, L. S. Rodriguez Pirani, M. F. Erben, R. Boese,
´
C. G. Reuter, Y. V. Vishnevskiy, N. W. Mitzel and C. O. Della Vedova,
ChemPhysChem, 2016, 17, 1463; Y. Berrueta Martinez,
L. S. Rodriguez Pirani, M. F. Erben, C. G. Reuter,
Y. V. Vishnevskiy, H. G. Stammler, N. W. Mitzel and C. O. Della
Vedova, Phys. Chem. Chem. Phys., 2015, 17, 15805.
10 M. Brezgunova, J. Lieffrig, E. Aubert, S. Dahaoui, P. Fertey,
`
´
S. Lebegue, J. Angyan, M. Fourmigue and E. Espinosa, Cryst. Growth
Des., 2013, 13, 3283.
Fig. 4 Detail of one chalcogen-bonded chain running along the (2a–c)
direction in (3ꢀbipy). The orange dotted lines indicate the chalcogen bond
interaction.
11 A. F. Cozzolino, P. J. W. Elder and I. Vargas-Baca, Coord. Chem. Rev.,
2011, 255, 1426.
12 A. Kremer, A. Fermi, N. Biot, J. Wouters and D. Bonifazi, Chem. –
Eur. J., 2016, 22, 5665.
13 P. C. Ho, P. Szydlowski, J. Sinclair, P. J. W. Elder, J. Ku¨bel, C. Gendy,
L. M. Lee, H. Jenkins, J. F. Britten, D. R. Morim and I. Vargas-Baca,
Nat. Commun., 2016, 7, 11299.
14 J. Y. C. Lim, I. Marques, A. L. Thompson, K. E. Christensen, V. Felix
and P. D. Beer, J. Am. Chem. Soc., 2017, 139, 3122; G. E. Garret,
E. I. Carrera, D. S. Seferos and M. S. Taylor, Chem. Commun., 2016,
52, 9881; S. Benz, M. Macchione, Q. Verolet, J. Mareda, N. Sakai and
S. Matile, J. Am. Chem. Soc., 2016, 138, 9093; S. Benz, J. Lopez-
Andarias, J. Mareda, N. Sakai and S. Matile, Angew. Chem., Int. Ed.,
2017, 56, 812.
15 P. Cardillo, E. Corradi, A. Lunghi, S. V. Meille, M. T. Messina,
P. Metrangolo and G. Resnati, Tetrahedron, 2000, 56, 5535; E. Corradi,
S. V. Meille, M. T. Messina, P. Metrangolo and G. Resnati, Tetrahedron
Lett., 1999, 40, 7519.
demonstrate that organic selenocyanates are efficient building
blocks in crystal engineering strategies. By analogy with halogen
bonding, they can probably be used also for other applications, such
as liquid crystals and gels, anion recognition or organocatalysis.
Notes and references
‡ Crystal data for 2: C10H8N2Se2, M = 314.10 g molꢁ1, crystal dimensions
0.21 ꢂ 0.02 ꢂ 0.01 mm, monoclinic, space group Cc, a = 5.9696(7) Å,
b = 36.720(4) Å, c = 10.2124(11) Å, b = 95.401(6)1, V = 2228.7(4) Å3, Z = 8,
r
calcd = 1.872 g cmꢁ3, F(000) = 1200, m = 6.597 mmꢁ1, T = 293 K, 2ymax
=
16 With intramolecular chalcogen bonds, see CCDC: AHEQIN, FAGGAV,
GIYJUV. For aromatic selenocyanates: BATDIJ, CIBFUP, KABTAJ,
KABTEN, WERYAT, SECNBZ. For aliphatic selenocyanates: GOHMEW,
ZUTTAL, CIGGEE, SOHQOX, YUNSIK.
17 K. Maartmann-Moe, K. A. Sanderud and J. Songstad, Acta Chem.
Scand., Ser. A, 1987, 38, 187.
18 S. L. W. McWhinnie, A. B. Brooks and I. Abrahams, Acta Crystallogr.,
Sect. C: Cryst. Struct. Commun., 1998, 54, 126.
19 A. Lari, R. Gleiter and F. Rominger, Eur. J. Org. Chem., 2009, 2267.
20 M. Hojjatie, S. Muralidharan and H. Freiser, Tetrahedron, 1989,
45, 1611.
55.371. Final results (for 253 parameters) were R1 = 0.0529, wR2 = 0.10 and
S = 1.018 for 3849 independent reflections [2328 with I 4 2s(I)]. Crystal
data for (2ꢀbipy): C20H16N4Se2, M = 470.29 g molꢁ1, crystal dimensions
0.13 ꢂ 0.08 ꢂ 0.04 mm, monoclinic, space group C2/c, a = 5.1880(5) Å,
b = 14.9962(13) Å, c = 25.101(2) Å, b = 92.613(3)1, V = 1950.8(3) Å3, Z = 4,
rcalcd = 1.601 g cmꢁ3, F(000) = 928, m = 3.801 mmꢁ1, T = 293 K, 2ymax
=
61.1581. Final results (for 119 parameters) were R1 = 0.037, wR2 = 0.0877 and
S = 1.03 for 3010 independent reflections [2147 with I 4 2s(I)]. Crystal data
for (3ꢀbipy): C20H16N4Se2, M = 470.29 g molꢁ1, crystal dimensions 0.36 ꢂ
%
0.34 ꢂ 0.06 mm, triclinic, space group P1, a = 5.3962(4) Å, b = 7.7356(6) Å,
c = 11.7477(9) Å, a = 99.421(3), b = 94.558(2), g = 104.661(2)1, V = 464.25(6) Å3,
Z = 1, rcalcd = 1.682 g cmꢁ3, F(000) = 232, m = 3.993 mmꢁ1, T = 293 K,
2ymax = 61.1021. Final results (for 118 parameters) were R1 = 0.0412,
wR2 = 0.0841 and S = 1.022 for 2831 reflections [2161 with I 4 2s(I)].
21 The reduction ratio is defined as d(XY)exp/[rvdW(X) + rvdW(Y)], where
d(XY)exp is the Xꢀ ꢀ ꢀY distance deduced from structure resolution and
rvdW(X) is the van des Waals radius of element X, defined in:
A. Bondi, J. Phys. Chem., 1964, 68, 441.
1 G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati 22 M. D. Esrafili and N. Mohammadirad, Mol. Phys., 2015, 113, 3282.
and G. Terraneo, Chem. Rev., 2016, 116, 2478; L. C. Gilday, 23 J. George, V. L. Deringer and R. Dronskowski, J. Phys. Chem. A, 2014,
S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney and
P. D. Beer, Chem. Rev., 2015, 115, 7118.
2 V. R. Thalladi, B. S. Goud, V. J. Hoy, F. H. Allen, J. A. K. Howard and
118, 3193.
24 K.-H. Linke and F. Lemmer, Z. Anorg. Allg. Chem., 1966, 345,
¨
211–216; T. M. Klapotke, B. Krumm and M. Scherr, Inorg. Chem.,
¨
G. R. Desiraju, Chem. Commun., 1996, 401; C. B. Aakeroy, N. R.
2008, 47, 7025.
¨
´
¨
Champness and C. Janiak, CrystEngComm, 2010, 12, 22; G. R. Desiraju, 25 T. M. Klapotke, B. Krumm, J. C. Galvez-Ruiz, H. Noth and I. Schwab,
Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
Eur. J. Inorg. Chem., 2004, 4764–4769.
This journal is ©The Royal Society of Chemistry 2017
Chem. Commun.