S.-S. P. Chou et al. / Tetrahedron Letters 44 (2003) 4653–4655
4655
2. Weinreb, S. M. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 5, pp. 401–449.
3. Boger, D. L.; Weinreb, S. M. Hetero Diels–Alder
Methodology in Organic Synthesis; Academic Press:
Orlando, 1987.
4. Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem.
Commun. 1998, 633–640.
5. Laschat, S.; Dickner, T. Synthesis 2000, 1781–1813.
6. Jorgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558–
3588.
7. Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57,
6099–6138.
8. Chou, S. S. P.; Hung, C. C. Synth. Commun. 2001, 31,
1097–1104.
Scheme 1.
9. Chou, S. S. P.; Hung, C. C. Synth. Commun. 2002, 32,
3119–3126.
10. Gompper, R.; Heinemann, U. Angew. Chem., Int. Ed.
tion of 6c to 8 is both regio- and stereospecific; only the
6-exo addition and trans product was obtained. Theo-
retical calculation28 shows that trans-8 has a much
lower energy (5.9388 kcal/mol) than the corresponding
cis isomer (8.8462 kcal/mol). Besides its thermodynamic
stability the selective formation of trans-8 may be
related to the activation energies involved (Scheme 1).
1980, 19, 216.
11. Barluenga, J.; Aznar, F.; Fernandez, M. Tetrahedron
Lett. 1995, 36, 6551–6554.
12. For the reaction of an aza-diene with the CꢀN bond of
tosyl isocyanate, see: Saito, T.; Kimura, H.; Soda, T.;
Karakasa, T. Chem. Commun. 1997, 1013–1014.
13. Ulrich, H. Chem. Rev. 1965, 65, 369–376.
14. Arbuzov, B. A.; Zobova, N. N. Synthesis 1974, 461–476.
15. Takaki, K.; Okamura, A.; Ohshiro, Y.; Agawa, T. J.
Org. Chem. 1978, 43, 402–405.
16. Chou, S. S. P.; Hung, C. C. Tetrahedron Lett. 2000, 41,
8323–8326.
17. Chou, S. S. P.; Hung, C. C. Synthesis 2001, 2450–2462.
18. Daly, J. W.; Spande, T. F. Alkaloids: Chemical and
Biological Perspectives; Pelletier, S. W., Eds.; Wiley: New
York, 1986; Vol. 3, Chapter 1.
19. Hopkins, P. B.; Fuchs, P. L. J. Org. Chem. 1978, 43,
1208–1217.
20. Chou, T. S.; Lee, S. J.; Peng, M. L.; Sun, D. J.; Chou, S.
S. P. J. Org. Chem. 1988, 53, 3027–3031.
21. Chou, S. S. P.; Liou, S. Y.; Tsai, C. Y.; Wang, A. J. J.
Org. Chem. 1987, 52, 4468–4471.
Assuming that the lone pair electrons of nitrogen must
attack from the back side of the mercurinium ion, the
reaction of intermediate 8A would give the trans
product, and the intermediate 8B would lead to the cis
product. It can be seen that 8B is sterically more
hindered than 8A. Hence only the trans-8 was obtained.
In summary, we have synthesized many 6-substituted
tetrahydropyridinones 4 from the aza-Diels–Alder reac-
tions of 3-sulfolenes 1 with p-toluenesulfonyl isocya-
nate. We have also successfully converted the
cycloaddition products 4e and 4f to the indolizidine and
quinolizidine compounds 7a/7b and 8 with the media-
tion of Hg(II) ions.
22. Chou, S. S. P.; Sung, C. C. J. Chin. Chem. Soc. 1989, 36,
601–607.
23. Chou, S. S. P.; Wey, S. J. J. Org. Chem. 1990, 55,
1270–1274.
Acknowledgements
24. Chou, S. S. P.; Yu, Y. J. J. Chin. Chem. Soc. 1997, 44,
373–378.
25. Chou, S. S. P.; Tsao, H. J.; Lee, C. M.; Sun, C. M. J.
Financial support of this work by the National Science
Council of the Republic of China is gratefully acknowl-
edged (NSC 90-2113-M-030-009).
Chin. Chem. Soc. 1993, 40, 53–57.
26. Parsons, A. F.; Pettifer, R. M. Tetrahedron Lett. 1996,
37, 1667–1670.
27. Harding, K. E.; Tiner, T. H. In Comprehensive Organic
Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 4, pp. 363–421.
28. The minimized steric energy is calculated by the program
CS Chem3D using MM2 and its default parameter.
References
1. Rubiralta, M.; Giralt, E.; Diez, E. Piperidine, Structure,
Preparation, Rectivity and Synthetic Applications of Pipe-
ridine and its Derivatives; Elsevier: Amsterdam, 1991.