Journal of the American Chemical Society
Article
(2) (a) Venn, R. F. Principles and Practice of Bioanalysis; Taylor &
Francis: London, UK, 2000. (b) Walker, J. M.; Rapley, R., Eds.
Molecular Biomethods Handbook; Humana Press: Totowa, NJ, 2008.
(3) Stockwell, B. R. Nature 2004, 432, 846.
(17) (a) Auzanneau, F.-I.; Meldal, M.; Bock, K. J. Pept. Sci. 1995, 1,
31. (b) Renil, M.; Ferreras, M.; Delaisse, J. M.; Foged, N. T.; Meldal,
M. J. Pept. Sci. 1998, 4, 195.
(18) Kuramochi, K.; Miyano, Y.; Enomoto, Y.; Takeuchi, R.; Ishi, K.;
Takakusagi, Y.; Saitoh, T.; Fukudome, K.; Manita, D.; Takeda, Y.;
Kobayashi, S.; Sakaguchi, K.; Sugawara, F. Bioconjugate Chem. 2008,
19, 2417.
(19) (a) Meldal, M.; Svendsen, I.; Breddam, K.; Auzanneau, F. I. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 3314. (b) Meldal, M.; Svendsen, I. J.
Chem. Soc., Perkin Trans. 1 1995, 1591.
(20) (a) Meldal, M.; Auzanneau, F. I.; Hindsgaul, O.; Palcic, M. M.
J. Chem. Soc., Chem. Commun. 1994, 1849. (b) Renil, M.; Meldal, M.
Tetrahedron Lett. 1995, 36, 4647. (c) Haddoub, R.; Dauner, M.;
Stefanowicz, F. A.; Barattini, V.; Laurent, N.; Flitsch, S. L. Org. Biomol.
Chem. 2009, 7, 665.
(4) (a) Ahn, C. H.; Choi, J. W.; Beaucage, G.; Nevin, J. H.; Lee, J. B.;
Puntambek, A.; Lee, J. Y. Proc. IEEE 2004, 92, 154. (b) Whitesides, G.
M. Nature 2006, 442, 368. (c) Yager, P.; Edwards, T.; Fu, E.; Helton,
K.; Nelson, K.; Tam, M. R.; Weigl, B. H. Nature 2006, 442, 412.
(d) Chin, C. D.; Linder, V.; Sia, S. K. Lab Chip 2007, 7, 41. (e) Yager,
P.; Domingo, G.; Gerdes, J. Annu. Rev. Biomed. Eng. 2008, 10, 107.
(f) Konry, T.; Walt, D. R. J. Am. Chem. Soc. 2009, 131, 13232.
(5) (a) Beaugnon, E.; Tournier, R. Nature 1991, 349, 470.
(b) Catherall, A. T.; Eaves, L.; King, P. J.; Booth, S. R. Nature
2003, 422, 579. (c) Ikezoe, Y.; Hirota, N.; Nakagawa, J.; Kitazawa, K.
Nature 1998, 393, 749. (d) Kimura, T.; Mamada, S.; Yamato, M.
Chem. Lett. 2000, 1294.
(21) Wong, L. S.; Thirlway, J.; Micklefield, J. J. Am. Chem. Soc. 2008,
130, 12456.
(6) (a) Winkleman, A.; Perez-Castillejos, R.; Gudiksen, K. L.;
Phillips, S. T.; Prentiss, M.; Whitesides, G. M. Anal. Chem. 2007, 79,
6542. (b) Mirica, K. A.; Phillips, S. T.; Shevkoplyas, S. S.; Whitesides,
G. M. J. Am. Chem. Soc. 2008, 130, 17678. (c) Mirica, K. A.;
Shevkoplyas, S. S.; Phillips, S. T.; Gupta, M.; Whitesides, G. M. J. Am.
Chem. Soc. 2009, 131, 10049. (d) Mirica, K. A.; Phillips, S. T.; Mace,
C. R.; Whitesides, G. M. J. Agric. Food Chem. 2010, 58, 6565.
(e) Mirica, K. A.; Ilievski, F.; Ellerbee, A. K.; Shevkoplyas, S. S.;
Whitesides, G. M. Adv. Mater. 2011, 23, 4134.
(7) (a) Halling, P. J.; Ulijn, R. V.; Flitsch, S. L. Curr. Opin. Biotechnol.
2005, 16, 385. (b) Laurent, N.; Haddoub, R.; Flitsch, S. L. Trends
Biotechnol. 2008, 26, 328. (c) Schuck, P.; Zhao, H. Methods Mol. Biol.
2010, 627, 15.
(8) Mammalian cells typically have intracellular ionic strengths on the
order of 200−300 mM, and contain ∼200 mg/mL protein, see: Storey,
K. B. Functional Metabolism: Regulation and Adaptation; John Wiley &
Sons: Hoboken, NJ, 2004; p403.
(9) (a) Ebersole, R. C.; Ward, M. D. J. Am. Chem. Soc. 1988, 110,
8623. (b) Rickert, J.; Brecht, A.; Gopel, W. Biosens. Bioelectron. 1997,
12, 567. (c) Nishino, H.; Murakawa, A.; Mori, T.; Okahata, Y. J. Am.
Chem. Soc. 2004, 126, 2264. (d) Su, X.; Zhang, J. Sens. Actuators B
2004, 100, 309. (e) Muratsugu, M.; Ohta, F.; Miya, Y.; Hosokawa, T.;
Kurosawa, S.; Kamo, N.; Ikeda, H. Anal. Chem. 1993, 65, 2933.
(10) (a) Fritz, J.; Baller, M. K.; Lang, H. P.; Rothuizen, H.; Vettiger,
(22) (a) Chick, H.; Martin, C. J. Biochem. J. 1913, 7, 92. (b) Quillin,
M. L.; Matthews, B. W. Acta Crystallogr. 2000, 56, 791. (c) Fischer, H.;
Polikarpov, I.; Craievich, A. F. Protein Sci. 2004, 13, 2825.
(23) It would also be possible to use beads with density greater than
the density of protein. This experimental design, however, would
require that the levitation media contain a diamagnetic cosolute of
high density in order to match the density of the levitation media (ρm)
with the density of the bead.
(24) (a) Kress, J.; Zanaletti, R.; Amour, A.; Ladlow, M.; Frey, J. G.;
Bradley, M. Chem.Eur. J. 2002, 8, 3769. (b) Auzanneau, F.-I.;
Meldal, M.; Bock, K. J. Pept. Sci. 1995, 1, 31.
(25) (a) Thornton, P. D.; McConnell, G.; Ulijn, R. V. Chem.
Commun. 2005, 5913. (b) Bosma, A. Y.; Ulijn, R. V.; McConnell, G.;
Girkin, J.; Halling, P. J.; Flitsch, S. L. Chem. Commun. 2003, 2790.
(26) Tyn, M. T.; Gusek, T. W. Biotechnol. Bioeng. 1990, 35, 327.
(27) Gao., J.; Whitesides, G. M. Anal. Chem. 1997, 69, 575.
(28) Wei, Y.; Wesson, P. J.; Kourkine, I.; Grzybowski, B. A. Anal.
Chem. 2010, 82, 8780.
(29) Previous studies have demonstrated that protein binding to
PEGA beads does not significantly change the volume of the beads;
see ref 25.
(30) Morton, K. W.; Mayers, D. F. Numerical Solution of Partial
Differential Equations: An Introduction; Cambridge University Press,
Cambridge, UK, 2005.
(31) Although both bound and unbound protein increase the density
of the bead, the influence of the unbound protein is negligible because
its concentration is significantly lower than the concentration of the
bound protein.
(32) Deen, W. M. Analysis of Transport Phenomena; Oxford
University Press: New York, 1998.
P.; Meyer, E.; Guntherodt, H.-J.; Gerber, Ch.; Gimzewski, J. K. Science
̈
2000, 288, 316. (b) Savran, C. A.; Knudsen, S. M.; Ellington, A. D.;
Manalis, S. R. Anal. Chem. 2004, 76, 3194. (c) Burg, T. P.; Godin, M.;
Knudsen, S. M.; Shen, W.; Carlson, G.; Foster, J. S.; Babcock, K.;
Manalis, S. R. Nature 2007, 446, 1066. (d) Goeders, K. M.; Colton, J. S.;
Bottomley, L. A. Chem. Rev. 2008, 108, 522. (e) Datar, R.; Kim, S.;
Jeon, S.; Hesketh, P.; Manalis, S.; Boisen, A.; Thundat, T. MRS Bull.
2009, 34, 449.
(33) The plots shown in Figure 3 are also presented in the
Supporting Information with error bars.
(34) Mrksich, M.; Grunwell, J. R.; Whitesides, G. M. J. Am. Chem.
Soc. 1995, 117, 12009.
(11) Ndieyira, J. W.; Watari, M.; Barrera, A. D.; Zhou, D.; Vogtli, M.;
Batchelor, M.; Cooper, M. A.; Strunz, T.; Horton, M. A.; Abell, C.;
Rayment, T.; Aeppli, G.; Mckendry, R. A. Nat. Nanotechnol. 2008, 3,
691.
(12) Chua, J. H.; Chee, R. E.; Agarwal, A.; Wong, S. M.; Zhang, G. J.
Anal. Chem. 2009, 81, 6266.
(13) (a) Schasfoort, R. B., Tudos, A. J., Eds. Handbook of Surface
Plasmon Resonance; Royal Society of Chemistry: Cambridge, UK,
2008. (b) Homola, J. Chem. Rev. 2008, 108, 462. (c) Stewart, M. E.;
Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.;
Nuzzo, R. G. Chem. Rev. 2008, 108, 494. (d) Mayer, K. M.; Hafner, J.
H. Chem. Rev. 2011, 111, 3828.
(35) We monitored the levitation height of beads functionalized with
100% sulfonamide 1 in the presence of 10 μM BCA for more than 500 h
(3 weeks). Even after this extended period of time, protein−ligand
binding had not yet reached its equilibrium state. This fact hindered our
ability to calculate accurately the characteristic time for this system; as a
result, we have excluded this datum point from further analysis.
(36) The small variations in the initial levitation heights of the color-
coded beads are likely due to differences in the densities of the beads
resulting from differences in the densities of the covalently
immobilized ligands, see ref 6b.
(37) (a) Wild, D., Ed. The Immunoassay Handbook; Macmillan Press:
Basingstoke, UK, 1994. (b) Lost, G. J. Principles & Practice of Point-
of-Care Testing; Lippincott Williams & Wilkins: Philadelphia, PA, 2002.
(38) The plot shown in Figure 7A is also presented in the Supporting
Information with a logarithmic concentration axis.
(14) Weinmann, H.-J.; Brasch, R. C.; Press, W.-R.; Wesbey, G. E. Am.
J. Roentgenol. 1984, 142, 619.
(15) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem.
Rev. 1999, 99, 2293.
(16) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.;
Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008,
108, 946.
5646
dx.doi.org/10.1021/ja211788e | J. Am. Chem. Soc. 2012, 134, 5637−5646