Job/Unit: O30784
/KAP1
Date: 12-08-13 11:38:45
Pages: 11
Synthesis of 1-(Ethoxycarbonyl)indolizines
Py+-CH2-EWG or isoquinolinium salts IQ+-CH2-EWG and
a variety of Michael acceptors.
hedron 2010, 66, 7743–7748; i) N. Kanomata, R. Sakaguchi, K.
Sekine, S. Yamashita, H. Tanaka, Adv. Synth. Catal. 2010, 352,
2966–2978; j) S. Muthusaravanan, S. Perumal, P. Yogeeswari,
D. Sriram, Tetrahedron Lett. 2010, 51, 6439–6443; k) Q.-F.
Wang, L. Hui, H. Hou, C.-G. Yan, J. Comb. Chem. 2010, 12,
260–265; l) N. Fernández, L. Carrillo, J. L. Vicario, D. Badía,
E. Reyes, Chem. Commun. 2011, 47, 12313–12315; m) J. L.
García Ruano, A. Fraile, M. R. Martín, G. González, C. Fa-
jardo, A. M. Martín-Castro, J. Org. Chem. 2011, 76, 3296–
3305; n) M. Ghandi, A. H. Jameà, Tetrahedron Lett. 2011, 52,
4005–4007; o) Y. Han, H. Hou, Q. Fu, C.-G. Yan, Tetrahedron
2011, 67, 2313–2322; p) A. Kumar, G. Gupta, S. Srivastava,
Org. Lett. 2011, 13, 6366–6369; q) D. Belei, C. Abuhaie, E.
Bicu, P. G. Jones, H. Hopf, L. M. Birsa, Synlett 2012, 23, 545–
548; r) C.-P. Chuang, K.-P. Chen, Tetrahedron 2012, 68, 1401–
1406; s) P. Gunasekaran, K. Balamurugan, S. Sivakumar, S.
Perumal, J. C. Menéndez, A. I. Almansour, Green Chem. 2012,
14, 750–757; t) S. M. Rajesh, S. Perumal, J. C. Menendez, S.
Pandian, R. Murugesan, Tetrahedron 2012, 68, 5631–5636; u)
I. Yavari, G. Khalili, F. Sadeghizadeh, Synlett 2012, 23, 557–
558; v) J. H. Lee, I. Kim, J. Org. Chem. 2013, 78, 1283–1288.
Experimental Section
General Procedure for the Synthesis of Indolizines 5 and 7: Michael
acceptor 6a–j or 13a–c (1 equiv.) and salt 1a–h·H+X– or 4a·H+Br–
(1–2 equiv.) were suspended in dichloromethane (CH2Cl2, 0.1 m),
and NaOH (32% aq.; 1 mL) was added with vigorous stirring at
room temperature. The suspension was stirred until the Michael
acceptor was completely consumed (monitored by TLC; 15 min–
1 h). Then water (30 mL) was added, and the mixture was extracted
with CH2Cl2 (3ϫ 5 mL). The combined organic extracts were dried
with Na2SO4. Chloranil (1 equiv.) was added, and the solution was
stirred at room temperature for 30 min–3 h. The solvent was evapo-
rated, and the residue was subjected to column chromatography (n-
pentane/EtOAc, 15:1–3:1, depending on Rf). The resulting solids
were dissolved in CHCl3, and insoluble precipitates were removed
by filtration. After evaporation, the products were further purified
by recrystallization from Et2O.
[5]
For selected publications, see: a) A. R. Katritzky, G. Qiu, B.
Yang, H.-Y. He, J. Org. Chem. 1999, 64, 7618–7621; b) F. Dum-
itrascu, M. Vasilescu, C. Draghici, M. T. Caproiu, L. Barbu,
¸
˘
˘
D. G. Dumitrescu, ARKIVOC 2011, 10, 346–358; c) A. Hazra,
S. Mondal, A. Maity, S. Naskar, P. Saha, R. Paira, K. B. P.
Sahu, P. S. Ghosh, C. Sinha, A. Samanta, S. Banerjee, N. B.
Mondal, Eur. J. Med. Chem. 2011, 46, 2132–2140; d) E. Kim,
M. Koh, B. J. Lim, S. B. Park, J. Am. Chem. Soc. 2011, 133,
6642–6649; e) F. Proença, M. Costa, Tetrahedron 2011, 67,
1071–1075; f) I. Dorange, R. Forsblom, I. Macsari, M. M.
Svensson, J. Bylund, Y. Besidski, J. Blid, D. Sohn, Y. Grav-
enfors, Bioorg. Med. Chem. Lett. 2012, 22, 6888–6895; g) H.
Hu, J. Feng, Y. Zhu, N. Gu, Y. Kan, RSC Adv. 2012, 2, 8637–
8644; h) M. Kucukdisli, T. Opatz, Eur. J. Org. Chem. 2012,
4555–4564; i) Z. Mao, X. Li, X. Lin, P. Lu, Y. Wang, Tetrahe-
dron 2012, 68, 85–91; j) Y. Shang, L. Wang, X. He, M. Zhang,
RSC Adv. 2012, 2, 7681–7688; k) Q. Cai, Y.-P. Zhu, Y. Gao, J.-
J. Sun, A.-X. Wu, Can. J. Chem. 2013, 91, 414–419.
J. Gubin, J. Lucchetti, J. Mahaux, D. Nisato, G. Rosseels, M.
Clinet, P. Polster, P. Chatelain, J. Med. Chem. 1992, 35, 981–
988.
P. Sonnet, P. Dallemagne, J. Guillon, C. Enguehard, S. Stiebing,
J. Tanguy, R. Bureau, S. Rault, P. Auvray, S. Moslemi, P. Sour-
daine, G.-E. Séralini, Bioorg. Med. Chem. 2000, 8, 945–955.
L.-L. Gundersen, C. Charnock, A. H. Negussie, F. Rise, S. Te-
klu, Eur. J. Pharm. Sci. 2007, 30, 26–35.
Y.-M. Shen, P.-C. Lva, W. Chen, P.-G. Liua, M.-Z. Zhang, H.-
L. Zhu, Eur. J. Med. Chem. 2010, 45, 3184–3190.
K. Kitadokoro, S. Hagishita, T. Sato, M. Ohtani, K. Miki, J.
Biochem. 1998, 123, 619–623.
L. De Bolle, G. Andrei, R. Snoeck, Y. Zhang, A. Van Lommel,
M. Otto, A. Bousseau, C. Roy, E. De Clercq, L. Naesens, Bio-
chem. Pharmacol. 2004, 67, 325–336.
a) W. Rettig, B. Strehmel, S. Schrader, H. Seifert, Applied Fluo-
rescence in Chemistry, Biology, and Medicine, Springer, New
York, 1999; b) J. R. Lakowicz, Principles of Fluorescence Spec-
troscopy, 3rd ed., Springer, New York, 2006.
Supporting Information (see footnote on the first page of this arti-
cle): Synthetic procedures, product characterization, and copies of
NMR spectra.
Acknowledgments
The authors thank the Deutsche Forschungsgemeinschaft (DFG)
(SFB 749, project B1) for financial support. The authors are grate-
ful to Nathalie Hampel for the preparation of some of the indoliz-
ines. Dr. Jörg Bartl and Dr. Armin Ofial are thanked for their help
during the preparation of the manuscript.
[1] F. Kröhnke, Ber. Dtsch. Chem. Ges. 1935, 68, 1177–1195.
[2] For reviews, see: a) A. G. Mikhailovskii, V. S. Shklyaev, Chem.
Heterocylc. Compd. 1997, 33, 243–265; b) J. Jacobs, E.
Van Hende, S. Claessens, N. De Kimpe, Curr. Org. Chem. 2011,
15, 1340–1362; c) A. Kakehi, Heterocyles 2012, 85, 1529–1577.
[3] For selected publications, see: a) W. G. Phillips, K. W. Ratts, J.
Org. Chem. 1970, 35, 3144–3147; b) O. Tsuge, S. Kanemasa, S.
Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3137–3157; c) O.
Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985,
58, 3320–3336; d) A. R. E. Carey, S. Al-Quatami, R. A.
More O’Ferrall, B. A. Murray, J. Chem. Soc., Chem. Commun.
1988, 1097–1098; e) A. R. E. Carey, R. A. More O’Ferrall,
B. A. Murray, J. Chem. Soc. Perkin Trans. 2 1993, 2297–2302;
f) X.-M. Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried,
J. Org. Chem. 1993, 58, 3060–3066; g) P. Karafiloglou, G. Sur-
pateanu, Int. J. Quantum Chem. 2004, 98, 456–464; h) Y. Fu,
H.-J. Wang, S.-S. Chong, Q.-X. Guo, L. Liu, J. Org. Chem.
2009, 74, 810–819; i) S. Matsumura, R. Takagi, S. Kojima, K.
Ohkata, M. Abe, Heterocycles 2010, 81, 2479–2495.
[4] For selected publications, see: a) O. Tsuge, S. Kanemasa, S.
Takenaka, Bull. Chem. Soc. Jpn. 1987, 60, 1489–1495; b) A. M.
Shestopalov, V. P. Litvinov, L. A. Rodinovskaya, Y. A. Shar-
anin, Bull. Acad. Sci. USSR Chem. 1991, 40, 129–138; c) A. M.
Shestopalov, Y. A. Sharanin, V. N. Nesterov, L. A. Rodinov-
skaya, V. E. Shklover, Y. T. Struchkov, V. P. Litvinov, Chem.
Heterocycl. Compd. 1991, 27, 1006–1011; d) S. Kojima, K. Fuji-
tomo, Y. Shinohara, M. Shimizu, K. Ohkata, Tetrahedron Lett.
2000, 41, 9847–9851; e) S. Yamada, J. Yamamoto, E. Ohta,
Tetrahedron Lett. 2007, 48, 855–858; f) Q.-F. Wang, X.-K.
Song, J. Chen, C.-G. Yan, J. Comb. Chem. 2009, 11, 1007–1010;
g) K.-P. Chen, Y.-J. Chen, C.-P. Chuang, Eur. J. Org. Chem.
2010, 5292–5300; h) Y. Han, J. Chen, L. Hui, C.-G. Yan, Tetra-
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14,
9675–9682.
a) For a comprehensive database of nucleophilicity parameters
N and sN, and electrophilicity parameters E, see: http://
www.cup.lmu.de/oc/mayr/; b) H. Mayr, M. Patz, Angew. Chem.
1994, 106, 990–1010; Angew. Chem. Int. Ed. Engl. 1994, 33,
938–957; c) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B.
Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remen-
nikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500–9512.
[15]
a) F. Kröhnke, Ber. Dtsch. Chem. Ges. 1933, 66, 604–610; b) F.
Kröhnke, Ber. Dtsch. Chem. Ges. 1937, 70, 543–547.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
9