T. Suzuki et al. / Tetrahedron Letters 44 (2003) 6095–6098
6097
with 1.2 equiv. of HBF4 in THF at room temperature,
64, 3102; (b) Baldridge, K. K.; Kasahara, Y.; Ogawa, K.;
Siegel, J. S.; Tanaka, K.; Toda, F. J. Am. Chem. Soc.
1998, 120, 6167.
2a+BF4 salt was isolated in 87% yield without giving
−
the expected carbenium 6a+ by CꢀOH heterolysis.14
Similarly, 2b+BF4 was obtained by acid treatment of
2. (a) Choi, C. H.; Kertesz, M. Chem. Commun. 1997, 2199;
(b) Bettinger, H. F.; Schleyer, P. v. R.; Schaefer, H. F.,
III Chem. Commun. 1998, 769.
3. (a) Baldridge, K. K.; Battersby, T. R.; Clark, R. V.;
Siegel, J. S. J. Am. Chem. Soc. 1997, 119, 7048; (b)
Suzuki, T.; Ono, K.; Nishida, J.; Takahashi, H.; Tsuji, T.
J. Org. Chem. 2000, 65, 4944; (c) Suzuki, T.; Ono, K.;
Kawai, H.; Tsuji, T. J. Chem. Soc., Perkin Trans. 2 2001,
1798.
−
1b in 84% yield. By considering the fact that 1,1,2-
triphenylacenaphthen-1-ol 1c underwent the acid-cata-
lyzed substitution reactions via 6c+,16 not only the
expansion of the C1ꢀC2 bond by steric factors but also
the strong donating property of amino substituents on
aryl groups are responsible for this unusual behavior.
One plausible explanation may be that both factors
raise the orbital energy of C1ꢀC2 s bond, thus enhanc-
ing the affinity of this s bond toward proton although
the involvement of hydrogen-bridged17,18 carbenium 7+
in this protonolysis is still unclear. In summary, this is
one of the rare examples where Brønsted acid is proven
to act as an oxidant or to assist oxidation to give the
carbenium salt.19 Studies on the relationship between
this unusual alcohol protonolysis and the alkane pro-
tonolysis by superacid18,20 are now in progress.21
4. (a) Bell, P. C.; Wallis, J. D. Chem. Commun. 1999, 257;
(b) O’Leary, J.; Bell, P. C.; Wallis, J. D.; Schweizer, W.
B. J. Chem. Soc., Perkin Trans. 2 2001, 133.
5. (a) Suzuki, T.; Yamamoto, R.; Higuchi, H.; Hirota, E.;
Ohkita, M.; Tsuji, T. J. Chem. Soc., Perkin Trans. 2 2002,
1937; (b) Nishida, J.; Suzuki, T.; Ohkita, M.; Tsuji, T.
Angew. Chem., Int. Ed. 2001, 40, 3251; (c) Suzuki, T.;
Nisida, J.; Tsuji, T. Chem. Commun. 1998, 2193.
6. Zsuffa, M. Chem. Ber. 1910, 43, 2915.
1
7. For 1a: mp 172.0–174.0°C; H NMR (300 MHz, CDCl3)
l/ppm 7.76 (br. d, 1H, J=7.5 Hz), 7.69 (br. d, 1H,
J=7.5 Hz), 7.58 (dd, 1H, J=7.5, 7.5 Hz), 7.50 (dd, 1H,
J=7.5, 7.5 Hz), 7.34 (br. d, 1H, J=7.5 Hz), 7.20 (br. d,
1H, J=7.5 Hz), 7.10 (AA%XX%, 2H), 7.09 (AA%XX%, 2H),
6.64 (AA%XX%, 2H), 6.53 (AA%XX%, 2H), 6.41 (AA%XX%,
2H), 6.27 (AA%XX%, 2H), 3.26 (s, 1H), 2.86 (s, 6H), 2.81
(s, 6H), 2.74 (s, 6H); IR (KBr) w/cm−1 3556. For 1b: mp
1
180.0°C (decomp.); H NMR (300 MHz, CDCl3) l/ppm
7.78 (br. d, 1H, J=7.5 Hz), 7.72 (br. d, 1H, J=7.5 Hz),
7.58 (dd, 1H, J=7.5, 7.5 Hz), 7.53 (dd, 1H, J=7.5, 7.5
Hz), 7.32 (br. d, 1H, J=7.5 Hz), 7.23 (br. d, 1H, J=7.5
Hz), 7.16 (AA%XX%, 2H), 7.01 (AA%XX%, 2H), 6.84–6.74
(m, 5H), 6.50 (AA%XX%, 2H), 6.40 (AA%XX%, 2H), 3.48 (s,
1H), 2.85 (s, 6H), 2.81 (s, 6H); IR (KBr) w/cm−1 3520.
Supplementary material
Crystallographic data (excluding structure factors) for
the structures in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supple-
mentary publication numbers CCDC 209572–209576.
Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2
1EZ, UK [fax: +44 (0)-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk]. ORTEP drawings with atom
1
For 2a+I3−: mp 241.0–242.5°C (decomp.); H NMR (300
MHz, CDCl3) l/ppm 8.20 (br. d, 1H, J=7.5 Hz), 8.10
(br. d, 1H, J=7.5 Hz), 7.65 (dd, 1H, J=7.5, 7.5 Hz), 7.57
(dd, 1H, J=7.5, 7.5 Hz), 7.47 (br. d, 1H, J=7.5 Hz), 7.36
(br. d, 1H, J=7.5 Hz), 7.70–7.10 (br., 8H), 6.68 (br., 4H),
3.27 (s, 12H), 3.15 (br. s, 6H); IR (KBr) w/cm−1 1582. For
2b+I3−: mp 141.5–143.5°C (decomp.); 1H NMR (300
MHz, CDCl3) l/ppm 8.22 (dd, 1H, J=7.5, 1.5 Hz), 8.14
(dd, 1H, J=7.5, 1.5 Hz), 7.70 (dd, 1H, J=7.5, 7.5 Hz),
7.56 (dd, 1H, J=7.5, 7.5 Hz), 7.51–7.42 (m, 6H), 7.23
(dd, 1H, J=7.5, 7.5 Hz), 7.40–7.00 (br., 4H), 6.63
(AA%XX%, br., 4H), 3.27 (s, 12H); IR (KBr) w/cm−1 1580.
numbering schemes for 1b, 2a+I3 , 3a, 4a, and 5a were
submitted as electronic supplementary material (PDF).
−
Acknowledgements
1
For 3a: mp 250.0–255.0°C; H NMR (300 MHz, CDCl3)
This work was supported by the Ministry of Education,
Science, and Culture, Japan (No. 15350019 and
14654139). We thank Professor Tamotsu Inabe (Hok-
kaido University) for use of the X-ray structure analysis
system. MS spectra were measured by Mr. Kenji
Watanabe and Dr. Eri Fukushi at the GC–MS and
NMR Laboratory (Faculty of Agriculture, Hokkaido
University).
l/ppm 8.05 (br. d, 1H, J=7.5 Hz), 7.77 (br. d, 1H,
J=7.5 Hz), 7.73 (br. d, 1H, J=7.5 Hz), 7.66 (AA%XX%,
2H), 7.57 (dd, 1H, J=7.5, 7.5 Hz), 7.43 (br. d, 1H, J=7.5
Hz), 7.14 (AA%XX%, 4H), 6.80 (AA%XX%, 2H), 6.60
(AA%XX%, 4H), 3.01 (s, 6H), 2.88 (s, 12H); IR (KBr)
w/cm−1 1706. For 4a: mp 213.0–215.0°C (decomp.); 1H
NMR (300 MHz, CDCl3) l/ppm 7.92 (dd, 1H, J=7.5,
1.5 Hz), 7.78 (dd, 1H, J=7.5, 1.5 Hz), 7.40 (dd, 1H,
J=7.5, 7.5 Hz), 7.39 (dd, 1H, J=7.5, 7.5 Hz), 7.29 (dd,
1H, J=7.5, 1.5 Hz), 7.14 (dd, 1H, J=7.5, 1.5 Hz),
7.75–6.10 (br., 12H), 6.17 (s, 1H), 3.02 (s, 6H), 2.95–2.70
(br., 12H); IR (KBr) w/cm−1 1590. For 5a: mp 221.0–
222.5°C; 1H NMR (300 MHz, CDCl3) l/ppm 7.76 (dd,
1H, J=7.5, 1.5 Hz), 7.71 (br. d, 1H, J=7.5 Hz), 7.37 (dd,
References
1. (a) Toda, F.; Tanaka, K.; Watanabe, M.; Tamura, K.;
Miyahara, I.; Nakai, T.; Hirotsu, K. J. Org. Chem. 1999,