10.1002/asia.201901015
Chemistry - An Asian Journal
COMMUNICATION
Synthesis of 4,5-disubstituted N-sulfonyl-1,2,3-triazoles 3a: In an
oven dried reaction tube equipped with stir bar was charged with acetyl
acetone 1a (0.2 mL, 1.96 mmol, 2.0 equiv.) and tBuOH (10 mL). Next, L-
proline (22 mg, 0.1 mmol, 10 mol %) and p-toluenesulfonyl azide 2a (193
mg, 0.98 mmol, 1.0 equiv.) were added in to the reaction mixture and the
resultant reaction mixture was stirred at room temperature up to
consumption of sulfonyl azide. After the completion of the reaction,
solvent was evaporated under reduced pressure and the obtained crude
was further purified through column chromatography using ethyl
acetate/hexane as an eluent to afford the 3a in 81% yield (221 mg) as
colorless solid. Mp: 98-100 °C; FTIR (KBr): 2923, 1688, 1638, 1594,
10 gave the tetra-substituted enamide product 11 in 55%
yield.[17] Next, denitrogentaive C-H bond insertion of 3a with N,N-
diethyl aniline 6 in the presence of 4 mol% of Rh2(Oct)4
furnished the tetra-substituted enamide derivative 13 in 59%
yield.[12i] Likewise, replacement of N,N-diethyl aniline with N-
methylindole 14 under the similar conditions afforded the
corresponding tetra-substituted enamides 15 in 76% yield.[12f]
After establishing the generality of the proline catalyzed
synthesis of 4,5-disubstituted N-sulfonyl-1,2,3-triazoles 3, the
plausible mechanism of the reaction was proposed based on the
1397, 1193, 1123, 1029, 951, 814 cm–1 1H NMR (400 MHz, CDCl3,
;
literature
precedence.[7-10]
Treatment
of
1,3-dicarbonyl
24 °C): δ 7.97 (d, 2H, J = 8.4 Hz), 7.40 (d, 2H, J = 7.9 Hz), 2.83 (s, 3H),
2.65 (s, 3H), 2.45 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3, 24 °C): δ 194.0,
147.8, 142.8, 139.2, 133.3, 130.7, 128.9, 28.4, 22.0, 10.0; HRMS: calcd.
for C12H13N3O3S+H: 280.0756; found: 280.0759.
compound with proline would generate the enamine
intermediate A. The selective formation of enamine intermediate
A determines the regioselectivity in the 1,3-diketone. Formation
of cyclic intermediate C could be rationalized through the
enamine nitrogen triggered addition of electron rich β-carbon of
A to terminal nitrogen of sulfonyl azide 2 and consequent ring
closer, a formal [3+2]-annulation. This regioselective addition
further favored by the transition state B involving hydrogen-
bonding interactions. Later, elimination of proline from C would
generate the 4,5-disubstituted N-sulfonyl-1,2,3-triazoles 3 in an
highly regioselective manner and regenerate the proline to
continue the catalytic cycle (Scheme 5).
Acknowledgements
We thank the DST-SERB, New Delhi, India (EMR/2016/
003677/OC) for funding this work. S.R. thanks CSIR for
fellowships. We also thank Ramkumar, IITM for single-crystal
analysis support.
Keywords: N-sulfonyl-1,2,3-Triazoles • organocatalyst • proline
R
• 1,3-dicarbonyl compound • annulation
R1
N
O
O
OH
O
R1
R
N
R2O2S
1
[1]
a) S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian J. 2011, 6,
2696-2718; b) R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. D.
Clercq, C.-F. Perno, A. Karlsson, J. Balzarini, M. J. Camarasa, J. Med.
Chem. 1994, 37, 4185-4194; c) A. Lauria, R. Delisi, F. Mingoia, A.
Terenzi, A. Martorana, G. Barone, A. M. Almerico, Eur. J. Org. Chem.
2014, 2014, 3289-3306.
N
H
O
N
3
CO2H
R1
O
R
N
O
A
[2]
[3]
a) W. S. Horne, C. A. Olsen, J. M. Beierle, A. Montero, M. R. Ghadiri,
Angew. Chem., Int. Ed. 2009, 48, 4718-4724; b) I. E. Valverde, A.
Bauman, C. A. Kluba, S. Vomstein, M. A. Walter, T. L. Mindt, Angew.
Chem., Int. Ed. 2013, 52, 8957-8960; c) W. S. Horne, M. K. Yadav, C.
D. Stout, M. R. Ghadiri, J. Am. Chem. Soc. 2004, 126, 15366-15367.
a) B. Chattopadhyay, V. Gevorgyan, Angew. Chem., Int. Ed. 2012, 51,
862-872; b) H. M. L. Davies, J. S. Alford, Chem. Soc. Rev. 2014, 43,
5151-5162; c) P. Anbarasan, D. Yadagiri, S. Rajasekar, Synthesis 2014,
46, 3004-3023; d) Y. Wang, X. Lei, Y. Tang, Synlett 2015, 26, 2051-
2059; e) Y. Jiang, R. Sun, X.-Y. Tang, M. Shi, Chem. –Eur. J. 2016, 22,
17910-17924; f) Y. Li, H. Yang, H. Zhai, Chem. –Eur. J. 2018, 24,
12757-12766.
N
HO
O
R1
R
R2O2S
N
N
N
C
O
R2SO2N3
N
O
N
O
2
R1
R
H
N
N
R2O2S
B
Scheme 5. Plausible mechanism.
[4]
a) E. J. Yoo, M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin, K. B. Sharpless,
S. Chang, Angew. Chem., Int. Ed. Engl. 2007, 46, 1730-1733; b) F.
Wang, H. Fu, Y. Jiang, Y. Zhao, Adv. Synth. Catal. 2008, 350, 1830-
1834; c) I. Cano, M. C. Nicasio, P. J. Pérez, Org. Biomol. Chem. 2010,
8, 536-538; d) Y. Liu, X. Wang, J. Xu, Q. Zhang, Y. Zhao, Y. Hu,
Tetrahedron 2011, 67, 6294-6299.
In conclusion, an efficient synthesis of 4,5-disubstituted N-
sulfonyl-1,2,3-triazoles have been achieved from substituted 1,3-
dicarbonyl compounds and sulfonyl azides employing proline as
a catalyst. The present method tolerates various functional
groups and allowed the access to various 4,5-disubstituted N-
[5]
[6]
J. Raushel, V. V. Fokin, Org. Lett. 2010, 12, 4952-4955.
M. E. Meza-Avina, M. K. Patel, C. B. Lee, T. J. Dietz, M. P. Croatt, Org.
Lett. 2011, 13, 2984-2987.
sulfonyl-1,2,3-triazoles
in
good
yield
with
excellent
[7]
a) D. B. Ramachary, A. B. Shashank, Chem. –Eur. J. 2013, 19, 13175-
13181; b) D. B. Ramachary, A. B. Shashank, S. Karthik, Angew. Chem.,
Int. Ed. 2014, 53, 10420-10424; c) A. B. Shashank, S. Karthik, R.
Madhavachary, D. B. Ramachary, Chem. –Eur. J. 2014, 20, 16877-
16881.
regioselectivity. The utility of the developed methodology was
further demonstrated through the rhodium catalyzed
denitrogentaive functionalization of synthesized triazole with
various coupling partners.
[8]
[9]
M. Belkheira, D. El Abed, J.-M. Pons, C. Bressy, Chem. –Eur. J. 2011,
17, 12917-12921.
a) L. J. T. Danence, Y. Gao, M. Li, Y. Huang, J. Wang, Chem. –Eur. J.
2011, 17, 3584-3587; b) L. Wang, S. Peng, L. J. T. Danence, Y. Gao, J.
Wang, Chem. –Eur. J. 2012, 18, 6088-6093.
Experimental Section
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.