Organic Letters
Letter
Stern−Volmer relationship25 indicated that more than one
quenching mode is operating (for experimental details and
extended mechanistic discussions, see the Supporting
ACKNOWLEDGMENTS
■
Support from the DFG (KL 2221/7-1 and Heisenberg
scholarship to M.K., KL 2221/4-2) and from the MPI fu
Kohlenforschung is gratefully acknowledged. The authors
̈
r
To date, it has been very common for methods of radical
difunctionalizations of olefins to have strong limitations. With
indoles as nucleophiles, the electronic properties of the
styrenes show an extraordinarily strong impact. Apart from
our work shown here (see 6f above), there is only one
procedure that could successfully apply a p-cyano-substituted
styrene.3d Most methods are limited to electron-rich styrenes,
which is not the case for difunctionalizations with other
nucleophiles. There is no simple rationalization of the substrate
limitations of such methods yet, hindered by a lack of
information. In the work presented here, we could not isolate
any characterizable products from reactions with incompatible
substrates. Clearly, there is room for future studies in this field.
In summary, we could show that styrene difunctionalization
reactions can be realized with a broad scope of aldehyde-
derived acyl radicals, in combination with the addition of
nucleophiles. This combination had previously not been
reported. We were able to show that various functional groups
on the styrene can be employed, forming quaternary all-carbon
centers upon addition of indoles and benzotriazole to the
benzylic position. The stabilization of the carbocation
intermediate is a key issue, reflected by the preference for α-
substituted styrenes in the case of heteroarene nucleophiles.
The case is opposite for alkyl nitriles, which provide imides
from α-unsubstituted styrenes only.
̈
̈
thank Jorg Rust and Conny Wirtz (both MPI fur
Kohlenforschung) for X-ray crystal analysis and NMR
measurements, respectively.
REFERENCES
■
(1) Lan, X.-W.; Wang, N.-X.; Xing, Y. Eur. J. Org. Chem. 2017, 2017,
5821.
(2) (a) Capaldo, L.; Ravelli, D. Eur. J. Org. Chem. 2017, 2017, 2056.
(b) Mayer, J. M. Acc. Chem. Res. 2011, 44, 36.
(3) (a) Xue, Q.; Xie, J.; Xu, P.; Hu, K.; Cheng, Y.; Zhu, C. ACS
Catal. 2013, 3, 1365. (b) Ha, T. M.; Chatalova-Sazepin, C.; Wang, Q.;
Zhu, J. Angew. Chem., Int. Ed. 2016, 55, 9249. (c) Zhu, N.; Wang, T.;
Ge, L.; Li, Y.; Zhang, X.; Bao, H. Org. Lett. 2017, 19, 4718. (d) Yang,
Y.; Song, R.-J.; Ouyang, X.-H.; Wang, C.-Y.; Li, J.-H.; Luo, S. Angew.
Chem., Int. Ed. 2017, 56, 7916. (e) Dong, Y.-X.; Li, Y.; Gu, C.-C.;
Jiang, S.-S.; Song, R.-J.; Li, J.-H. Org. Lett. 2018, 20, 7594. (f) Su, R.;
Li, Y.; Min, M.-Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Chem.
Commun. 2018, 54, 13511. (g) Ouyang, X.-H.; Li, Y.; Song, R.-J.; Hu,
M.; Luo, S.; Li, J.-H. Sci. Adv. 2019, 5, No. eaav9839. (h) Liu, S.;
Klussmann, M. Chem. Commun. 2020, 56, 1557.
(4) (a) Arcadi, A.; Bianchi, G.; Chiarini, M.; D’Anniballe, G.;
Marinelli, F. Synlett 2004, 2004, 944. (b) Zhan, Z.-P.; Yang, R.-F.;
Lang, K. Tetrahedron Lett. 2005, 46, 3859. (c) Huang, Z.-H.; Zou, J.-
P.; Jiang, W.-Q. Tetrahedron Lett. 2006, 47, 7965. (d) Wu, G. L.; Wu,
L. M. Chin. Chem. Lett. 2008, 19, 55. (e) Gao, Y.-H.; Yang, L.; Zhou,
W.; Xu, L.-W.; Xia, C.-G. Appl. Organomet. Chem. 2009, 23, 114.
(5) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Chem.
Commun. 2014, 50, 14197.
(6) Klauck, F. J. R.; Yoon, H.; James, M. J.; Lautens, M.; Glorius, F.
ACS Catal. 2019, 9, 236.
(7) Ouyang, X.-H.; Song, R.-J.; Hu, M.; Yang, Y.; Li, J.-H. Angew.
Chem., Int. Ed. 2016, 55, 3187.
(8) (a) Li, M.; Yang, J.; Ouyang, X.-H.; Yang, Y.; Hu, M.; Song, R.-J.;
Li, J.-H. J. Org. Chem. 2016, 81, 7148. (b) Duan, Y.; Li, W.; Xu, P.;
Zhang, M.; Cheng, Y.; Zhu, C. Org. Chem. Front. 2016, 3, 1443.
(9) Ouyang, X.-H.; Cheng, J.; Li, J.-H. Chem. Commun. 2018, 54,
8745.
ASSOCIATED CONTENT
■
sı
* Supporting Information
The Supporting Information is available free of charge at
Experimental details, NMR spectra, crystallographic
data, and further mechanistic discussion (PDF)
Accession Codes
(10) Ouyang, X.-H.; Hu, M.; Song, R.-J.; Li, J.-H. Chem. Commun.
CCDC 1978887 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
2018, 54, 12345.
(11) (a) Banerjee, A.; Lei, Z.; Ngai, M.-Y. Synthesis 2019, 51, 303.
(b) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev.
1999, 99, 1991.
(12) Also see: (a) Majek, M.; Jacobi von Wangelin, A. Angew. Chem.,
Int. Ed. 2015, 54, 2270. (b) Cartier, A.; Levernier, E.; Corce, V.;
Fukuyama, T.; Dhimane, A.-L.; Ollivier, C.; Ryu, I.; Fensterbank, L.
Angew. Chem., Int. Ed. 2019, 58, 1789.
(13) (a) Chudasama, V.; Fitzmaurice, R. J.; Caddick, S. Nat. Chem.
2010, 2, 592. (b) Liu, W.; Li, Y.; Liu, K.; Li, Z. J. Am. Chem. Soc.
2011, 133, 10756.
(14) (a) Li, J.; Wang, D. Z. Org. Lett. 2015, 17, 5260. (b) de Souza,
G. F. P.; Bonacin, J. A.; Salles, A. G. J. Org. Chem. 2018, 83, 8331.
(15) Li, W.-Y.; Wang, Q.-Q.; Yang, L. Org. Biomol. Chem. 2017, 15,
9987.
́
AUTHOR INFORMATION
■
Corresponding Author
Martin Klussmann − Max-Planck-Institut fu
̈
r Kohlenforschung,
̈
(16) Cheng, Y.-Y.; Lei, T.; Su, L.; Fan, X.; Chen, B.; Tung, C.-H.;
Wu, L.-Z. Org. Lett. 2019, 21, 8789.
Author
Marcel Lux − Max-Planck-Institut fu
Mulheim an der Ruhr, Germany
(17) Yayla, H. G.; Peng, F.; Mangion, I. K.; McLaughlin, M.;
Campeau, L.-C.; Davies, I. W.; DiRocco, D. A.; Knowles, R. R. Chem.
Sci. 2016, 7, 2066.
̈
r Kohlenforschung, 45470
̈
(18) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562.
(19) Baron, R.; Darchen, A.; Hauchard, D. Electrochim. Acta 2006,
51, 1336.
Complete contact information is available at:
(20) Wayner, D. D. M.; McPhee, D. J.; Griller, D. J. Am. Chem. Soc.
1988, 110, 132.
(21) Mumm, O. Ber. Dtsch. Chem. Ges. 1910, 43, 886.
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX