the enantioselective addition of dialkylzincs to aldehydes.11
Considering the affinity to transition metal, we designed and
synthesized new chiral N,N,P-tridentate ligands (type II).
Here we report newly designed N,N,P-tridentate ligands
(Scheme 1) and their application to the copper-catalyzed
substituted aziridines in high yield. The thus obtained
aziridines were treated with KPPh2 to give the corresponding
amino phosphines.12 Condensation of 2-quinolylcarbaldehyde
with these amino phosphines gave the desired N,N,P-ligands
in high yield.
Table 1 lists the optimized reaction conditions, such as
Scheme 1
Table 1. Enantioselective 1,4-Addition of Diethylzinc to
2-Cyclohexene-1-one (3)
enantioselective addition of dialkylzincs to enones.
The N,N,P-ligands were simply prepared as follows
(Scheme 2): Starting from ꢀ-amino alcohols such as L-valinol
Cu(OTf)2/mol
a
entry
R
%
temp/°C time/h convn/%b ee/%b
1
2
3
4
5
6
7
8
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
t-Bu
t-Bu
t-Bu
t-Bu
1.0
0.5
0.2
0.2
0.2
0.1
0.1
1.0
0.2
0.1
0.1
0
0
0
5
5
5
5
5
5
24
5
5
5
>99
>99
>99
>99
66
97 (S)
97 (S)
97 (S)
98 (S)
99 (S)
96 (S)
98 (S)
99 (S)
95 (S)
95 (S)
96 (S)
Scheme 2
-20
-40
0
-40
0
0
0
-40
89
>99
>99
>99
95
9
10
11
24
>99
a Cu(OTf)2:ligand ) 1:2.5. b The conversions and ee values were
determined by GC analysis (Supelco γ-DEX-225).
the amount of catalyst (Cu(OTf)2 and ligand), the reaction
temperature, and the substituent effect on the ligand (1: R
) i-Pr, 2: R ) t-Bu), in the reaction of 2-cyclohexen-1-one
with diethylzinc. We observed high enantioselectivity in both
cases of R ) i-Pr and t-Bu in this reaction. Even if the
catalyst load was decreased to 0.1 mol % of Cu(OTf)2 and
0.25 mol % of ligand, the reaction proceeded to afford (S)-
3-alkylcyclohexanone in 98% ee at -40 °C. In most of the
previously reported reactions, 1 mol % or more of catalyst
was necessary to obtain high ee. Compared with those
reported methods,1,2 our present catalyst system exhibited
high catalytic activity and enantioselectivity.
Regarding the utility of the 2-quinolyl moiety, Pfaltz and
co-workers pointed out an asymmetric Heck reaction and
asymmetric hydrogenation.13 The ligand having the 2-quinolyl
moiety exhibited higher ee than the one having the pyridyl
moiety. That is, when the pyridyl moiety was used instead
of the 2-quinolyl moiety under the same reaction conditions,
only 55% ee of product was obtained even if 1 mol % of
(R ) i-Pr) and L-tert-leucinol (R ) t-Bu), ditosylation of
ꢀ-amino alcohols followed by the treatment of KOH afforded
(8) Other examples of use of N,P-ligands: (a) Hu, X.; Chen, H.; Zhang,
X Angew. Chem., Int. Ed. 1999, 38, 3518–3521. (b) Morimoto, T.;
Yamaguchi, Y.; Suzuki, M.; Saitoh, A. Tetrahedron Lett. 2000, 41, 10025–
10029. (c) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc.
2001, 123, 755–756. (d) Krauss, I. J.; Leighton, J. L. Org. Lett. 2003, 5,
3201–3203. (e) Hajra, A.; Yoshikai, N.; Nakamura, E. Org. Lett. 2006, 8,
4153–4155. (f) Soeta, T.; Selim, K.; Kuriyama, M.; Tomioka, K. AdV. Synth.
Catal. 2007, 349, 629–635. (g) Morimoto, T.; Obara, N.; Yoshida, I.;
Tanaka, K.; Kan, T. Tetrahedron Lett. 2007, 44, 3093–3095. (h) Hatano,
M.; Asai, T.; Ishihara, K. Tetrahedron Lett. 2007, 48, 8590–8594.
(9) (a) Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Chem. Soc.,
Chem. Commun. 1991, 1752–1753. (b) Hayashi, M.; Miyamoto, Y.; Inoue,
T.; Oguni, N. J. Org. Chem. 1993, 58, 1515–1522.
(10) (a) Hayashi, M.; Inoue, T.; Oguni, N. J. Chem. Soc., Chem.
Commun. 1994, 341–342. (b) Hayashi, M.; Inoue, T.; Miyamoto, Y.; Oguni,
N. Tetrahedron 1994, 50, 4385–4398. (c) Hayashi, M.; Yoshimoto, K.;
Hirata, N.; Tanaka, K.; Oguni, N.; Harada, K.; Matsushita, A.; Kawachi,
Y.; Sasaki, H. Isr. J. Chem. 2001, 41, 241–246.
(12) Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.;
Kumada, M. J. Org. Chem. 1983, 48, 2195–2202.
(13) (a) Loiseleur, O.; Hayashi, M.; Keenan, M.; Schmees, N.; Pfaltz,
A. J. Organomet. Chem. 1999, 576, 16–22. (b) Drury, W. J.; Zimmermann,
N.; Keenan, M.; Hayashi, M.; Kaiser, S.; Goddard, R.; Pfaltz, A. Angew.
Chem., Int. Ed. Engl. 2004, 43, 70–74.
(11) (a) Tanaka, T.; Yasuda, Y.; Hayashi, M. J. Org. Chem. 2006, 71,
7091–7093. (b) Tanaka, T.; Sano, Y.; Hayashi, M. Chem. Asian J. 2008,in
press.
3510
Org. Lett., Vol. 10, No. 16, 2008