4744
W. C. Black et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4741–4744
relative to the amide. The sp2 atoms of the amide impose
a suboptimal conformational restraint on the aromatic
ring and the hydrogen bond. In contrast, the CF3 group
attached to an sp3 carbon orients itself perpendicular to
the aromatic ring and stabilizes the aromatic ring in its
bioactive conformation. The sp3 hybridized nitrogen al-
lows the simultaneous formation of an optimal hydro-
gen bond. In the case of compound 19, the nitrile
substituent is considerably smaller than the CF3 group
resulting in a low barrier to rotation for the aromatic
ring. As long as a substituent in this position is large en-
ough to enforce the conformational preference of the
aromatic ring, and can prevent protonation of the amine
group at physiological pH, a potent compound will be
obtained.
3. Molteni, M.; Volonterio, A.; Zanda, M. Org. Lett. 2003, 5,
3887; Volonterio, A.; Bravo, P.; Zanda, M. Org. Lett.
2000, 2, 1827.
´
4. Herrero, S.; Suarez-Gea, M. L.; Gonzalez-Mun˜iz, R.;
Garcıa-Lopez, M. T.; Herranz, R.; Ballaz, S.; Barber, A.;
´
´
´
´
Fortun˜o, A.; Del Rıo, J. Bioorg. Med. Chem. Lett. 1997, 7,
855.
5. Palmer, J. T.; Bryant, C.; Wang, D. -X.; Davis, D. E.;
Setti, E. L.; Rydzewski, R. M.; Venkatraman, S.; Tian,
Z.-Q.; Burrill, L. C.; Mendonca, R. V.; Springman, E.;
McCarter, J.; Chung, T.; Cheung, H.; McGrath, M.;
Somoza, J.; Enriquez, P.; Yu, Z. W.; Strickley, R. M.; Liu,
L.; Venuti, M. C.; Percival, M. D.; Falgueyret, J.-P.;
Prasit, P.; Oballa, R.; Riendeau, D.; Young, R. N.;
Wesolowski, G.; Rodan, S. B.; Johnson, C.; Kimmel, D.
B.; Rodan, G. J. Med. Chem. 2005 in press.
6. McGrath, M. E.; Klaus, J. L.; Barnes, M. G.; Bromme, D.
Nat. Struct. Biol. 1997, 4, 105–109; McGrath, M. E.;
Sprengeler, P. A.; Hill, C. M.; Martichonok, V.; Cheung,
H.; Somoza, J. R.; Palmer, J. T.; Janc, J. W. Biochemistry
2003, 42, 15018.
7. Robichaud, J.; Oballa, R.; Prasit, P.; Falgueyret, J.-P.;
Percival, M. D.; Wesolowski, G.; Rodan, S. B.; Kimmel, D.;
Johnson, C.; Bryant, C.; Venkatraman, S.; Setti, E.;
Mendoca, R.; Palmer, J. T. J. Med. Chem. 2003, 46, 3709.
8. Robichaud, J.; Bayly, C.; Oballa, R.; Prasit, P.; Mellon,
C.; Falgueyret, J.-P.; Percival, M. D.; Wesolowski, G.;
Rodan, S. B. Bioorg. Med. Chem. Lett. 2004, 14, 4291.
9. Ishii, A.; Higashiyama, K.; Mikami, K. Synlett 1997, 1381.
10. Gosselin, F.; Roy, A.; OꢁShea, P. D.; Chen, C.; Volante,
R. P. Org. Lett. 2004, 6, 641; Gosselin, F.; OꢁShea, P. D.;
Roy, S.; Chen, C.; Reamer, R. A.; Chen, C.; Volante, R.
P. Org. Lett. 2005, 7, 355.
This replacement of an amide with a trifluoroethylamine
leads to advantages other than potency and selectivity.
In the dipeptide nitriles, while the P2-P3 amide bond
was found to be metabolically stable, the P1-P2 amide
bond can be hydrolyzed to give the carboxylic acid. This
was especially apparent in dipeptide inhibitors contain-
ing leucine in P2. Replacing the leucine with cyclohexyl
effectively blocked this route of metabolism. When the
P2-P3 amide is replaced by the phenyl ring of compound
2, this P1-P2 amide hydrolysis is not observed. Similarly,
in the case of trifluoroethylamine derivatives described,
we found no evidence of a P1-P2 amide cleavage, even
though these compounds contain leucine in P2.
11. Zhao, M.; Li, J.; Song, Z.; Desmond, D.; Tschaen, D. M.;
Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett. 1998,
39, 5323.
In conclusion, we have found that trifluoroethylamine is
an excellent surrogate for the P2 amide bond in the
inhibitors of Cat K. Not only does this functional group
enhance potency and selectivity over other cathepsins,
but the resulting compounds are stable to P1-P2 amide
bond cleavage that is observed in analogous dipeptide
inhibitors. The fully elaborated inhibitor 8 is a ꢀ5 pM
inhibitor of Cat K and is >10,000-fold selective over
other cathepsins.
12. Inhibitory potencies were determined in a version of the
published Cat K assay in which the enzyme concentration
was reduced to 10 pM—the lowest enzyme concentration
at which activity could be reliably measured. At this
concentration, IC50s below 5 pM cannot be determined.
13. Crystallographic data (excluding structure factors) for the
structures in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplemen-
tary publication number CCDC 274083 for 11. Copies of
the data can be obtained, free of charge, on application to
CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK
References and notes
1. Venkatesan, N.; Kim, B. H. Curr. Med. Chem. 2002, 9,
2243; Gante, J. Angew. Chem. Int. Ed. Engl. 1994, 33,
1699.
14. Advanced Chemistry Development, Inc., Toronto, Cana-
da; v6.00.
15. Falgueyret, J.-P.; Black, W. C.; Cromlish, W.; Desmarais,
S.; Lamontagne, S.; Mellon, C.; Riendeau, D.; Rodan, S.;
Tawa, P.; Wesolowski, G.; Bass, K. E.; Venkatraman, S.;
Percival, M. D. Anal. Biochem. 2004, 335, 218.
2. Volonterio, A.; Bellosta, S.; Bravin, F.; Bellucci, M. C.;
´
Bruche, L.; Colombo, G.; Malpezzi, L.; Mazzini, S.;
Meille, S. V.; Meli, M.; Ramırez de Arellano, C.; Zanda,
´
M. Chem. Eur. J. 2003, 9, 4510.