Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC04863K
COMMUNICATION
Journal Name
produces glass 18, which has a surface that is significantly
more hydrophobic than that of untreated glass (contact angles
of surface before and after reaction are 7o and 112o,
respectively).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) S. Flink, F. C. J. M. van Veggel and D. N. Reinhoudt, Adv.
Mater., 2000, 12, 1315; (b) Z. Farka, T. Juřík, D. Kovář, L.
Trnková and P. Skládal, Chem. Rev., 2017, 117, 9973.
(a) Y. Chen, H. Chen and J. Shi, Adv. Mater., 2013, 25, 3144;
(b) E. Aznar, M. Oroval, L. Pascual, J. R. Murguía, R. Martínez-
Máñez and F. Sancenón, Chem. Rev., 2016, 116, 561.
U. Hanefeld, L. Gardossi and E. Magner, Chem. Soc. Rev.,
2009, 38, 453.
R. Georgiadis, K. P. Peterlinz and A. W. Peterson, J. Am. Chem.
Soc., 2000, 122, 3166.
(a) M. Krishnamoorthy, S. Hakobyan, M. Ramstedt and J. E.
Gautrot, Chem. Rev., 2014, 114, 10976; (b) H. Jiang and F.-J.
Xu, Chem. Soc. Rev., 2013, 42, 3394.
2
3
4
5
6
(a) R. J. Klein, D. A. Fischer and J. L. Lenhart, Langmuir, 2011,
27, 12423; (b) V. Dugas and Y. Chervalier, Langmuir, 2011, 27
14188; (c) J.-W. Park, Y. J. Park and C.-H. Jun, Chem.
Commun., 2011, 47, 4860; (d) N. Moitra, S. Ichii, T. Kamei, K.
Kanamori, Y. Zhu, K. Takeda, K. Nakanishi and T. Shimada, J.
Am. Chem. Soc., 2014, 136, 11570; (e) J. Escorihuela, S. P.
Pujari and H. Zuilhof, Langmuir, 2017, 33, 2185.
,
7
(a) K. B. Yoon, Acc. Chem. Res., 2007, 40, 29; (b) F. Hoffmann,
M. Cornelius, J. Morell and M. Fröba, Angew. Chem. Int. Ed.,
2006, 45, 3216; (c) S. K. Vashist, E. Lam, S. Hrapovic, K. B.
Male and J. H. T. Luong, Chem. Rev., 2014, 114, 11083; (d) C.
M. Crudden, M. Sateesh and R. Lewis, J. Am. Chem. Soc.,
2005, 127, 10045.
8
9
(a) T. Shimada, K. Aoki, Y. Shinoda, T. Nakamura, N.
Tokunaga, S. Inagaki and T. Hayashi, J. Am. Chem. Soc., 2003,
125, 4688; (b) Y. Maegawa, N. Mizoshita, T. Tani, T. Shimada
and S. Inagaki, J. Mater. Chem., 2011, 21, 14020.
(a) Y.-R. Yeon, Y. J. Park, J.-S. Lee, J.-W. Park, S.-G. Kang and
C.-H. Jun, Angew. Chem. Int. Ed., 2008, 47, 109; (b) Y.-K. Sim,
J.-W. Park, B.-H. Kim and Jun, C.-H. Chem. Commun., 2013,
49, 11170; (c) Y. R. Han, J.-W. Park, H. Kim, H. Ji, S. H. Lim and
C.-H. Jun, Chem. Commun., 2015, 51, 17084; (d) R.-Y. Choi,
C.-H. Lee and C.-H. Jun, Org. Lett., 2018, 20, 2972.
Fig. 2 (a) Fluorescence spectra of solutions of 18 in CH2Cl2 with different concentrations
of nitrobenzene (NB) (excitation at 330 nm). (b) Fluorescence intensities of solutions of
18 in CH2Cl2 at 482 nm following addition of nitrobenzene (14.4 mM) and washing with
CH2Cl2
It is known that aromatic nitro compounds are efficient
electron transfer quenchers of fluorescent aromatic
compounds.16 To demonstrate potential applications of the
immobilization strategy described above, pyrenyl group-
immobilized glass 18 was utilized as a recyclable fluorescence
sensor of the potential explosive simulant, nitrobenzene (NB).
Inspection of the fluorescence spectra displayed in Fig. 2a
shows that 18 has strong fluorescence with a maximum at 482
nm. Upon addition of NB to a solution of 18 in CH2Cl2, the
intensity of fluorescence at 482 nm decreases, leading to
complete quenching when the concentration of NB reaches
14.4 mM. Pyrenyl group-immobilized glass 18 can be
separated, washed and used for NB detection multiple times
(Fig. 2b).
10 (a) J.-W. Park and C.-H. Jun, J. Am. Chem. Soc., 2010, 132
7268. (b) J.-W. Park, D.-S. Kim, M.-S. Kim, J.-H. Choi and C.-H.
Jun, Polym. Chem., 2015, , 555.
,
6
11 The surface structure of modified silica and its purity were
also examined with 13C CP-MAS NMR and elemental analysis
with washing experiment (see ESI†).
12 The surface density (molecules/nm2) of benzyl(dimethyl)-
silane moiety loaded on 4a can be estimated by using
[loading extent (mmol/g)
is Avogadro’s number and SA is the surface area (310 m2/g)
of the silica
x
NA x 10-21 / SA (m2/g)], where NA
2
.
13 J. McMurry, Organic Chemistry, Brooks/Cole, Pacific Grove,
CA, 5th edn, 2000. pp. 407.
In the investigation described above, we demonstrated that
styrylsilanes serve as a new family of coupling reagents for
immobilization of organic functional groups on solid surfaces.
Styrylsilanes with high purities can be produced on large scales
utilizing catalytic hydrosilylation reactions. This new protocol
enables fabrication of unique functionalized materials, as
exemplified by the preparation of a polymer-based organic-
inorganic hybrid material that serves as a recyclable sensor.
This work was supported by a grant from the National
Research Foundation of Korea (NRF) (Grant 2016-R-1-
A2b4009460).
14 M. A. Brook, M. A. Hadi and A. Neuy, J. Chem. Soc., Chem.
Commun., 1989, 957.
15 Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless
and M. G. Finn, J. Am. Chem. Soc., 2003, 125, 3192.
16 (a) S. Pramanik, C. Zheng, X. Zhang, T. J. Emge and J. Li, J. Am.
Chem. Soc., 2011, 133, 4153; (b) L. E. Kreno, K. Leong, O. K.
Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Chem.
Rev., 2012, 112, 1105; (c) Y. R. Han, S.-H. Shim, D.-S. Kim and
C.-H. Jun, Org. Lett., 2018, 20, 264.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins