In an experiment designed to synthesize the napththoxazine
cycloadduct 2 by intramolecular DielsꢀAlder cyclization
from an imine precursor 2a of 2,5-dihydroxybenzaldehyde
and a chirally pure phenylalanine ester derivative, we
observed that racemic 2H-benzo[b][1,4]oxazine 1 was
obtained as the only product, in good yields (Scheme 1).
This new finding lead us to believe that an electrocycli-
zation precursor possessing extended conjugation or a
β-aryl substituent may be essential for the adjacent 1,4-
benzoquinone system to cause benzylic oxidation, in a
way that is similar to benzylic oxidations caused by
DDQ (Figure 1).11
Scheme 1. Formation of 2H-Benzo[b][1,4]oxazines
Table 1. Synthesis of 2H-Benzo[b][1,4]oxazines from Quinol
and Natural Amino Acid Derivatives
previously highlighted oxidative dearomatization as a
powerful strategy for the total synthesis of architecturally
complex molecules wherein planar, aromatic scaffolds are
converted to three-dimensional molecular architectures.8
Oxidative dearomatization has been previously adapted
to nitrogen-tethered ortho-quinol acetates for azacycliza-
tion reactions for the synthesis of lycorine-type Amarylli-
daceae alkaloids.9
In light of these classical and elaborated examples, the
present report puts forward an application of oxidative
dearomatization of 2,5-dihydroxy carbonyl compounds
using silver oxide10 for the synthesis of 2H-benzo[b]-
[1,4]oxazines that provides an easy access to nitrogenꢀ
carbon (NꢀCx) and oxygenꢀcarbon (OꢀCy) strategic
bonds in a single operation.
a No reaction in acetonitrile and methanol. Reaction in THF with
4 equiv of silver oxide resulted in 10% yield; product obtained in 70%
yield with THF and 2 equiv of silver oxide.
Figure 1. Representative structure of electrocyclization precursor.
(7) (a) Cacchi, S.; Fabrizi, G.; Parisi, L. M. Org. Lett. 2003, 5, 3843.
(b) Yang, T.; Lin, C.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2005, 7, 4781.
(c) Evinder, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. (d) Fang, Y.;
Li, C. J. Org. Chem. 2006, 71, 6427. (e) Martin, R.; Larsen, C. H.;
Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379. (f) Viirre, R. D.;
Evindar, G.; Batey, R. A. J. Org. Chem. 2008, 73, 3452. (g) Chen, Y.;
Wang, Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625. (h) Bao, W.; Liu, Y.;
Lv, X.; Qian, W. Org. Lett. 2008, 10, 3899.
(8) (a) Liao, C. C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856.
(b) Lin, K. C.; et al. J. Org. Chem. 2002, 67, 8157. (c) Gao, S.-Y.; Lin,
Y.-L.; Rao, P. D.; Liao, C.-C. Synlett 2000, 421. (d) Roche, S. P.; Porco,
J. A., Jr. Angew. Chem., Int. Ed. 2011, 50, 4068. (e) Tsai, Y.-F.; Peddinti,
R. K.; Liao, C.-C. Chem. Commun. 2000, 475. (f) Nicolaou, K. C.;
Vassilikogiannakis, G.; Simonsen, K. B.; Baran, P. S.; Zhong, Y.-L.;
Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. J. Am. Chem. Soc.
2000, 122, 3071.
Thus similar reaction conditions were applied to esters
of other natural amino acids which contain a β-aryl
substituent like phenylalanine and tryptophan esters.
We were pleased to obtain 2H-benzo[b][1,4]oxazines 3
and 4 in good to excellent yields in all the cases (Table 1).
One of the 2H-benzo[b][1,4]oxazines, 4, was isolated
as a bright yellow solid that crystallized well, whose
ꢁ
(10) (a) Valderrama, J. A.; Gonzalez, M. F.; Mahana, D. P.; Tapia,
R. A.; Fillio, H.; Pautet, F.; Rodriguez, J. A.; Theoduloz, C.; Schmeda-
Hirschmann, G. Bioorg. Med. Chem. 2006, 14, 5003. (b) Valderrama,
ꢁ
J. A.; Colonelli, P.; Gonzalez, M. F.; Rodriguez, J. A.; Theoduloz, C.
Bioorg. Med. Chem. 2008, 16, 10172.
ꢁ
(9) (a) Quideau, S.; Pouysegu, L.; Deffieux, D. Synlett 2008, 4, 467.
ꢁ
(b) Pouysegu, L.; Avellan, A. V.; Quideau, S. J. Org. Chem. 2002, 67,
3425–3436. Braun, N. A.; Ousmer, M.; Bray, J. D.; Bouchu, D.; Peters,
K.; Peters, E.-V.; Ciufolini, M. A. J. Org. Chem. 2000, 65, 4397.
(11) (a) Lee, H.; Harvey, R. G. J. Org. Chem. 1988, 53, 4587. (b) Fu,
P. F.; Harvey, R. G. Chem. Rev. 1978, 78, 317. (c) Walker’, D.; Hiebert,
J. D. Chem. Rev. 1967, 67, 153.
Org. Lett., Vol. 14, No. 2, 2012
553