J
B. Musio et al.
Paper
Synthesis
imine in dichloromethane in the presence of MgSO4.55 The spectro-
scopic data of (E)-5c–e,56 (E)-5h–j,57 (E)-5f,58 (E)-5g,59 (E)-5k,60 (E)-
5l,61 and (E)-5m47 are in accordance with reported values.
(2) (a) Mitic, A.; Gernaey, K. V. Chem. Eng. Technol. 2015, 38, 1699.
(b) Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q.
ChemSusChem 2013, 6, 746. (c) Ley, S. V. Chem. Rec. 2012, 12,
378. (d) McQuade, D. T.; Seeberger, P. H. J. Org. Chem. 2013, 78,
6384.
Preparation of β-Lactams 6a–r; General Procedure
(3) (a) Porta, R.; Benaglia, M.; Puglisi, A. Org. Process Res. Dev. 2016,
20, 2. (b) Baumann, M.; Baxendale, I. R. Beilstein J. Org. Chem.
2015, 11, 1194. (c) Ghislieri, D.; Gilmore, K.; Seeberger, P. H.
Angew. Chem. Int. Ed. 2014, 678. (d) Gutmann, B.; Cantillo, D.;
Kappe, C. O. Angew. Chem. Int. Ed. 2015, 54, 6688.
(4) (a) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew.
Chem. Int. Ed. 2015, 54, 3449. (b) Ley, S. V.; Fitzpatrick, D. E.;
Myers, R. M.; Battilocchio, C.; Ingham, R. J. Angew. Chem. Int. Ed.
2015, 54, 10122.
(5) (a) Kirschning, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J.
2006, 12, 5972. (b) Tsubogo, T.; Oyamada, H.; Kobayashi, S.
Nature 2015, 520, 329. (c) Munirathinam, R.; Huskens, J.;
Verboom, W. Adv. Synth. Catal. 2015, 357, 1093. (d) Hornung, C.;
Hallmark, B.; Mackley, M. R.; Baxendale, I. R.; Ley, S. V. Adv.
Synth. Catal. 2010, 352, 1736. (e) Suzuki, Y.; Laurino, P.;
McQuade, D. T.; Seeberger, P. H. Helv. Chim. Acta 2012, 95, 2578.
(f) Brahma, A.; Musio, B.; Ismayilova, U.; Nikbin, N.;
Kamptmann, S. B.; Siegert, P.; Jeromin, G.; Ley, S. V.; Pohl, M.
Synlett 2015, 262.
A solution of 2-diazoketone 1e–i (0.06 M in MeCN) and the appropri-
ate imine 5a–m (0.125 M in MeCN) were pumped into the tubular
glass reactor covered with a polytetrafluoroethylene film for safety
and insulation reasons (i.d. 3.6 mm, internal volume: 5.5–6.0 mL) at
the same flow rate (total flow rate of 1.0 mL min–1). An internal pres-
sure of 2.0 MPa by a back pressure regulator (BPR) and a MW irradia-
tion of 80 W were assured. After 10 min, the exit temperature reached
a steady state at 165 °C (Figure 1d; green line), and collection of the
crude reaction mixture was started at this time. The crude product
was concentrated in vacuo, and the residue was purified by flash col-
umn chromatography on silica gel (hexane–EtOAc) to give β-lactams
6a–r. CAUTION: special precautions must be taken because of the
hazards associated with the diazo compounds and the ketene deriva-
tives. All work was carried in a well ventilated fumehood, with an au-
tomatic shut down of the system in case of an increase of the tem-
perature and pressure over the maximum value set. The spectroscop-
ic data of trans-6a,62 trans-6d,20 trans-6g,63 trans-6i,55 cis-6j,64 trans-
6m,55 and trans-6n,65 are in accordance with reported values.
(6) (a) Gilmore, K.; Seeberger, P. H. Chem. Rec. 2014, 14, 410.
(b) Baumann, M.; Baxendale, I. R. React. Chem. Eng. 2016, 11.
(c) Plutschack, M. B.; Correia, C. A.; Seeberger, P. H.; Gilmore, K.
Organic Photoredox Chemistry in Flow, In Top. Organomet.
Chem.; vol. 27; Noël, T., Ed.; Springer: Switzerland, 2015, 43–76.
(d) Schuster, E. M.; Wipf, P. Isr. J. Chem. 2014, 54, 361. (e) Su, Y.;
Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Eur. J. 2014, 20,
10562. (f) Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. J. Isr.
J. Chem. 2014, 54, 351.
(7) (a) Roth, G. P.; Stalder, R.; Long, T. R.; Sauer, D. R.; Djuric, S. W.
J. Flow Chem. 2013, 3, 34. (b) Kabeshov, M.; Musio, B.; Murray, P.
R. D.; Browne, D. L.; Ley, S. V. Org. Lett. 2014, 16, 4618.
(c) Stalder, R.; Roth, G. P. ACS Med. Chem. Lett. 2013, 4, 1119.
(d) Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011,
7, 1108.
1-Benzyl-3-(benzofuran-2-yl)-4-phenylazetidin-2-one (trans-6b)
Yield: 61%; yellow oil; dr trans/cis 92:8.
1H NMR (600 MHz, CDCl3): δ = 7.52 (d, J = 7.6 Hz, 1 H), 7.24–7.46 (m,
12 H), 7.21 (td, J = 7.5, 1.0 Hz, 1 H), 6.64 (s, 1 H), 5.00 (d, J = 15.1 Hz,
1 H), 4.64 (d, J = 2.4 Hz, 1 H), 4.38 (d, J = 2.3 Hz, 1 H), 3.92 (d,
J = 15.2 Hz, 1 H).
13C NMR (150.0 MHz, CDCl3): δ = 165.5, 155.0, 150.7, 136.6, 135.1,
129.1, 128.9, 128.8, 128.4, 128.2, 127.8, 126.5, 124.3, 122.9, 120.9,
111.1, 105.2, 60.4, 59.1, 44.9.
IR (neat): 3674, 2988, 1755, 1453, 1252, 1076, 725 cm–1
.
HRMS: m/z [M + H]+ calcd for C24H20NO2: 354.1494; found: 354.1503.
Additional data related to this publication are available at the
(8) (a) Cintas, P.; Tagliapietra, S.; Caporaso, M.; Tabasso, S.;
Cravotto, G. Ultrason. Sonochem. 2015, 25, 8. (b) Brasholz, M.;
Johnson, B.; Macdonald, J. M.; Polyzos, A.; Tsanaktsidis, J.;
Saubern, S.; Holmes, A. B.; Ryan, J. H. Tetrahedron 2010, 66,
6445.
(9) (a) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(b) Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Acc.
Chem. Res. 2014, 47, 1338. (c) Dudley, G. B.; Stiegman, A. E.
Chem. Sci. 2015, 6, 2144.
Acknowledgment
The authors would like to acknowledge Dr Aki Tomita and Professor
Jonathan M. Goodman for helpful discussions and suggestions. The
authors are also thankful to the EPSRC (Award Nos. EP/K009494/1,
EP/K039520/1 and EP/M004120/1) for financial support.
(10) (a) Kappe, C. O.; Pieber, B.; Dallinger, D. Angew. Chem. Int. Ed.
2013, 52, 1088. (b) Glasnov, T. N.; Kappe, C. O. Chem. Eur. J.
2011, 17, 11956. (c) Xolin, A.; Stévenin, A.; Pucheault, M.;
Norsikian, S.; Boyer, F.-D.; Beau, J.-M. Org. Chem. Front. 2014, 1,
992. (d) Damm, M.; Glasnov, N. T.; Kappe, C. O. Org. Process Res.
Dev. 2010, 14, 215. (e) Kunz, U.; Turek, T. Beilstein J. Org. Chem.
2009, 5, 1. (f) Ceylan, S.; Coutable, L.; Wegner, J.; Kirschning, A.
Chem. Eur. J. 2011, 17, 1884. (g) Kirschning, A.; Kupracz, L.;
Hartwig, J. Chem. Lett. 2012, 41, 562.
(11) (a) Smith, C. J.; Iglesias-Sigüenza, F. J.; Baxendale, I. R.; Ley, S. V.
Org. Biomol. Chem. 2007, 5, 2758. (b) Baxendale, I. R.; Hayward,
J. J.; Ley, S. V. Comb. Chem. High Throughput Screening 2007, 35,
802. (c) Glasnov, T. N.; Kappe, C. O. Macromol. Rapid Commun.
2007, 28, 395. (d) Singh, B. K.; Kaval, N.; Tomar, S.; Van Der
Eycken, E.; Parmar, V. S. Org. Process Res. Dev. 2008, 12, 468.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References
(1) Hessel, V.; Kralisch, D.; Kockmann, N. In Novel Process Windows:
Innovative Gates to Intensified and Sustainable Chemical Pro-
cesses, 1st Ed.; Wiley-VCH Verlag: Weinheim, 2015.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, A–L