10.1002/anie.202001326
Angewandte Chemie International Edition
A. A. Fokin, Nature 2011, 477, 308; b) S. Grimme, P. R. Schreiner,
Angew. Chem. Int. Ed. 2011, 50, 12639; c) A. A. Fokin, L. V. Chernish,
P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafin, J. E. P.
Dahl, R. M. K. Carlson, P. R. Schreiner, J. Am. Chem. Soc. 2012, 134,
13641; d) G. Lu, R. Y. Liu, Y. Yang, C. Fang, D. S. Lambrecht, S. L.
Buchwald, P. Liu, J. Am. Chem. Soc. 2017, 139, 16548.
performed with computing resources granted by JARA-HPC from
RWTH Aachen University under project ‘jara0091’.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
[14] Ethers act as important linkers in biomolecules, such as tannins and
lignins, see: a) B. Lochab, S. Shukla, I. K. Varma, RSC Adv. 2014, 4,
21712-21752; b) J. Kühlborn, J. Groß, T. Opatz, Nat. Prod. Rep. 2020,
DOI 10.1039/C9NP00040B.
Keywords: chemoselectivity • Csp2-Csp3 coupling • dinuclear Pd(I) •
DFT • catalysis
[15] E. Lyngvi, I. A. Sanhueza, F. Schoenebeck, Organometallics 2015, 34,
805-812.
[16] For a methods overview, see: T. Sperger, I. A. Sanhueza, I. Kalvet, F.
Schoenebeck Chem. Rev. 2015, 115, 9532.
[1] a) A. Matsumoto, S. Tanaka, T. Otsu, Macromolecules 1991, 24, 4017-
4024; b) W. L. Yang et al. Science 2007, 316, 1460-1462; c) Y. Chen,
A. J. H. Spiering, S. Karthikeyan, G. W. M. Peters, E. W. Meijer, R. P.
Sijbesma, Nature Chem. 2012, 4, 559; d) Y. Wada, S. Kubo, H. Kaji,
Adv. Mater. 2018, 30, 1705641.
[17] Figure 2 is a simplified view of the precise effect of dispersion. With
dispersion the mechanism of oxidative addition is different in that the
initial ligand dissociation is substrate assisted, rather than a simple
dissociation. However, the ligand dissociation energy is predicted to be
between 26.9 and 27.9 kcal/mol for the various substrates (with or
without dispersion). For previous detailed investigations, see: a) Ref 15;
b) C. L. McMullin, N. Fey, J. N. Harvey, Dalton Trans. 2014, 43,
13545; c) C. L. McMullin, J. Jover, J. N. Harvey, N. Fey, Dalton Trans.
2010, 39, 10833.
[18] H. Jacobsen, L. Cavallo, ChemPhysChem 2012, 13, 562-569.
[19] A corrigendum of our previous publications is in preparation.
[20] D. Lu, Z. Meng, G. A. Thakur, P. Fan, J. Steed, C. L. Tartal, D. P. Hurst,
P. H. Reggio, J. R. Deschamps, D. A. Parrish, C. George, T. U. C. Järbe,
R. J. Lamb, A. Makriyannis, J. Med. Chem. 2005, 48, 4576-4585.
[21] We tested a number of different protecting groups and selective
bromination methods. See SI for details.
[22] CCDC 1946371 contains the supplementary crystallographic data for
compound 1. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[23] For details please refer to the Supporting Information.
[24] For reviews, see: a) J. Almond-Thynne, D. C. Blakemore, D. C. Pryde,
A. C. Spivey, Chem. Sci. 2017, 8, 40; b) I. J. S. Fairlamb, Chem. Soc.
Rev. 2007, 36, 1036; c) S. Schröter, C. Stock, T. Bach, Tetrahedron
2005, 61, 2245.
[2] L. Wanka, K. Iqbal, P. R. Schreiner, Chem. Rev. 2013, 113, 3516-3604.
[3] W. Kim et al. Nature 2018, 556, 103.
[4] a) P. Cabildo, R. M. Claramunt, I. Forfar, J. Elguero, Tetrahedron Lett.
1994, 35, 183-184; b) G. F. Raenko, N. I. Korotkikh, T. M. Pekhtereva,
O. P. Shvaika, Russ. J. Org. Chem. 2001, 37, 1153-1157; c) X. Wu, J.
W. T. See, K. Xu, H. Hirao, J. Roger, J.-C. Hierso, J. Zhou, Angew.
Chem. Int. Ed. 2014, 53, 13573-13577; d) V. A. Shadrikova, E. V.
Golovin, Y. N. Klimochkin, Chemistry of Heterocyclic Compounds
2015, 50, 1586-1594; e) W.-J. Zhou, G.-M. Cao, G. Shen, X.-Y. Zhu,
Y.-Y. Gui, J.-H. Ye, L. Sun, L.-L. Liao, J. Li, D.-G. Yu, Angew. Chem.
Int. Ed. 2017, 56, 15683-15687; f) G.-Z. Wang, R. Shang, Y. Fu,
Synthesis 2018, 50, 2908-2914; g) A. Herath, V. Molteni, S. Pan, J.
Loren, Org. Lett. 2018, 20, 7429-7432; h) J. Koeller, P. Gandeepan, L.
Ackermann, Synthesis 2019, 51, 1284-1292.
[5] a) C. Sämann, V. Dhayalan, P. R. Schreiner, P. Knochel, Org. Lett.
2014, 16, 2418-2421; b) H.-S. Hwang, S.-R. Joo, S.-H. Kim, Bull.
Korean Chem. Soc. 2015, 36, 2769-2772; c) F. Toriyama, J. Cornella,
L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech, P. S. Baran, J. Am.
Chem. Soc. 2016, 138, 11132-11135; d) D. N. Primer, G. A. Molander,
J. Am. Chem. Soc. 2017, 139, 9847-9850.
[6] a) J. A. Fontana, M. Dawson, Z. Xia (Wayne State University,
Sandford-Burnham Medical Research Institute), WO2011079305A1,
2011; b) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem. Int.
Ed. 2004, 43, 550.
[7] Br-migration in arenes has previously also been seen under acidic
conditions, see: a) E. J. O'Bara, R. B. Balsley, I. Starer, J. Org. Chem.
1970, 35, 16-19; b) S. J. Barraza, S. E. Denmark, Synlett 2017, 28,
2891-2895.
[8] For examples, see: a) T. R. Hoye, M. Chen, J. Org. Chem. 1996, 61,
7940-7942; b) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M.
Lemaire, Chem. Rev. 2002, 102, 1359-1470; c) A. F. Littke, G. C. Fu,
Angew. Chem. Int. Ed. 2002, 41, 4176-4211; d) C. Wolf, H. Xu, J. Org.
Chem. 2008, 73, 162-167; e) C. Han, S. L. Buchwald, J. Am. Chem.
Soc. 2009, 131, 7532-7533; f) C. Li, T. Chen, B. Li, G. Xiao, W. Tang,
Angew. Chem. Int. Ed. 2015, 54, 3792-3796; g) I. P. Beletskaya, F.
Alonso, V. Tyurin, Coord. Chem. Rev. 2019, 385, 137-173.
[9] a) T. Kamikawa, T. Hayashi, Tetrahedron Lett. 1997, 38, 7087-7090;
b) I. Kalvet, G. Magnin, F. Schoenebeck, Angew. Chem. Int. Ed. 2017,
56, 1581-1585.
[10] For examples, see: a) A. H. Roy, J. F. Hartwig, Organometallics 2004,
23, 194-202; b) P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed.
2004, 43, 4704-4734; c) N. Yoshikai, H. Mashima, E. Nakamura, J. Am.
Chem. Soc. 2005, 127, 17978-17979; d) C. Y. Legault, Y. Garcia, C. A.
Merlic, K. N. Houk, J. Am. Chem. Soc. 2007, 129, 12664-12665; e) G.
Espino, A. Kurbangalieva, J. M. Brown, Chem. Commun. 2007, 1742-
1744; f) F. Schoenebeck, K. N. Houk, J. Am. Chem. Soc. 2010, 132,
2496-2497; g) F. Proutière, F. Schoenebeck, Angew. Chem. Int. Ed.
2011, 50, 8192-8195; h) K. Manabe, M. Yamaguchi, Catalysts 2014, 4,
307; i) Z. L. Niemeyer, A. Milo, D. P. Hickey, M. S. Sigman, Nature
Chem. 2016, 8, 610.
[25] a) F. Proutiere, E. Lyngvi, M. Aufiero, I. A. Sanhueza, F. Schoenebeck,
Organometallics 2014, 33, 6879; b) T. D. Tran et al. ChemMedChem
2014, 9, 1378; c) F. Proutière, M. Aufiero, F. Schoenebeck, J. Am.
Chem. Soc. 2012, 134, 606; d) Z. Hassan, M. Hussain, A. Villinger, P.
Langer, Tetrahedron 2012, 68, 6305; e) F. Proutiere, F. Schoenebeck,
Angew. Chem. Int. Ed. 2011, 50, 8192; f) J. B. J. Milbank, D. C. Pryde,
T. D. Tran (Pfizer Ltd. (UK)), WO2011004276, 2011; g) A. F. Littke,
C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020.
[26] a) S. T. Keaveney, G. Kundu, F. Schoenebeck, Angew. Chem. Int. Ed.
2018, 57, 12573; b) I. Kalvet, T. Sperger, T. Scattolin, G. Magnin, F.
Schoenebeck, Angew. Chem. Int. Ed. 2017, 56, 7078.
[27] For other couplings with the same dimer Pd(I) dimer, see: a) G. Yin, I.
Kalvet, F. Schoenebeck, Angew. Chem. Int. Ed. 2015, 54, 6809; b) M.
Aufiero, T. Sperger, A. S. Tsang, F. Schoenebeck, Angew. Chem. Int.
Ed. 2015, 54, 10322; c) X.-Y. Chen, M. Pu, H.-G. Cheng, T. Sperger,
F. Schoenebeck, Angew. Chem. Int. Ed. 2019, 58, 11395-11399; d) M.
Mendel, I. Kalvet, D. Hupperich, G. Magnin, F. Schoenebeck, Angew.
Chem. Int. Ed. 2020, 59, 2115. For selected uses of more labile Pd(I)
dimers as precatalysts, see: e) P. R. Melvin, A. Nova, D. Balcells, W.
Dai, N. Hazari, D. P. Hruszkewycz, H. P. Shah, M. T. Tudge, ACS
Catal. 2015, 5, 3680; f) T. J. Colacot, Platinum Met. Rev. 2009, 53, 183;
g) U. Christmann, D. A. Pantazis, J. Benet-Buchholz, J. E. McGrady,
F. Maseras, R. Vilar, J. Am. Chem. Soc. 2006, 128, 6376; h) J. Stambuli,
R. Kuwano, J. F. Hartwig, Angew. Chem. Int. Ed. 2002, 41, 4746.
[28] CCDC 1946657 contains the supplementary crystallographic data for
compound 10g. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[29] Organometallic coupling partner was prepared from R-MgCl (1 equiv.),
LiCl (1 equiv.) and ZnCl2 (1.1 equiv.).
[30] ΔΔG‡ for C-Br vs. C-OTf oxidative addition to substrate C is 3.6
kcal/mol in favor of C-Br addition at the level of theory mentioned in
Figure 2. For a rationalization why Pd(0)PtBu3 selects for C-halogen
over C-OTf addition, see: a) F. Schoenebeck, K. N. Houk, J. Am. Chem.
Soc. 2010, 132, 2496; b) A. F. Littke, C. Y. Dai, G. C. Fu, J. Am. Chem.
Soc. 2000, 122, 4020.
[11] G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447-
2464.
[12] a) J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54,
12274-12296; b) S. Rösel, J. Becker, W. D. Allen, P. R. Schreiner, J.
Am. Chem. Soc. 2018, 140, 14421-14432.
[13] a) P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk,
H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson,
4
This article is protected by copyright. All rights reserved.