B. W. Lee et al. / Tetrahedron Letters 44 (2003) 5905–5907
5907
To summarize the above results, we developed an
efficient method for the preparation of syn-aminoalco-
hol (1a–6a) from readily available aromatic a-amino
acids through chelation control contributed by a CH-p
interaction. These species can be easily converted to
each corresponding syn-a-hydroxy-b-amino acids as
key component of small peptide. We have also applied
1a to enantiomerically pure (−)-bestatin.
Acknowledgements
This work was supported by grant (No R01-2000-
00175) from Basic Research Program of Korea Science
& Engineering Foundation. We are also grateful for the
financial support of Brain Korea 21 program.
References
Figure 3. Molecular structure and atomic numbering scheme
of 12. Thermal ellipsoids are drawn at the 30% probability
level and the H-atoms omitted for clarity. The dihedral angle
between the aromatic planes of benzyl and Pf group
1. (a) Nagai, M.; Kojima, F.; Naganawa, H.; Hamada, M.;
Aoyagi, T.; Takeuchi, T. J. Antibiot. 1997, 50, 82; (b)
Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.;
Hamada, M.; Takeuchi, T. J. Antibiot. 1990, 43, 143; (c)
Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.;
Takeuchi, T. J. Antibiot. 1976, 29, 97.
,
(C(2)ꢀC(7)) is 34.41(5)°. Selected H···C distances (A):
H(3)···C(20) 3.22, H(3)···C(21) 3.45, H(3)···C(22) 3.44,
H(3)···C(23) 3.29, H(3)···C(24) 3.13, H(3)···C(25) 3.16.
2. Shibata, N.; Itoh, E.; Terashima, S. Chem Pharm. Bull.
1998, 46, 733.
This methodology has been applied to the synthesis of
3. (a) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc.
1992, 114, 6570; (b) Dondoni, A.; Perrone, D.; Semola,
T. Synthesis 1995, 181; (c) Nozaki, K.; Sato, N.; Takaya,
H. Tetrahedron: Asymmetry 1993, 4, 2179.
(−)-bestatin 16 which requires the coupling of two
structural
unit,
N-terminal
b-amino-a-hydroxy
phenylbutanoic acid (AHPBA) and C-terminal amino
acid leucine. After protection of hydroxy group in 1a
with BnBr, resulting benzylate was oxidized with
KMnO4 to give AHPBA derivative 14 as N-terminal
part in 84% yield. The coupling reaction of 14 with
(S)-leucine methyl ester was carried out in the presence
of DCC to afford the dipeptide product 15 in 91%
yield. Treatment of 15 with lithium hydroxide followed
by exposure of resulting crude acid to H2 over Pd/C
gave (−)-bestatin in 93% yield, which was identical with
a previous report (Scheme 1).1
4. Wang, Z.-M.; Kolb, H. C.; Sharpless, K. B. J. Org.
Chem. 1994, 59, 5104.
5. Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377.
6. (a) Lee, W. S.; Jang, K. C.; Kim, J. H.; Park, K. H.
Chem. Commun. 1999, 251; (b) Chang, K.-T.; Park, H.-
Y.; Kim, Y.-K.; Park, K. H.; Lee, W. S. Heterocycles
2001, 55, 1173.
7. Lubell, W. D.; Rapoport, H. J. Am. Chem. Soc. 1987,
109, 236.
8. Gerspacher, M.; Rapoport, H. J. Org. Chem. 1991, 56,
3700.
9. Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 1141.
10. Garner, P.; Ramakanth, S. J. Org. Chem. 1986, 51, 2609.
11. Anh, N. T.; Eisenstein, O. Nouv. J. Chem. 1977, 1, 61.
12. Shetty, A. S.; Zhang, J.-S.; Moore, J. S. J. Am. Chem.
Soc. 1996, 118, 1019.
13. Wakita, R.; Miyakoshi, M.; Nakatsuji, Y.; Okahara, M.
J. Inclu. Phenom. 1991, 10, 127.
14. (a) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc.
1990, 112, 5525; (b) Hunter, C. A.; Singh, J.; Thornton, J.
M. J. Mol. Biol. 1991, 218, 837; (c) Singh, J.; Thornton,
J. M. J. Mol. Biol. 1990, 211, 595.
15. SAINT-NT version 5.0. Program for data collection and
data reduction, Bruker-AXS, Madison, WI, 1998;
Sheldrick, G. M. SHELXTL version 5.1. Program for
Solution and Refinement of Crystal Structures, Bruker-
AXS, Madison, WI, 1998.
Scheme 1. Reagents and conditions: (i) BnBr, NaH, Bu4NI,
THF, 0°C, 97%; (ii) KMnO4, HOAc, H2O, pentane, 87%; (iii)
L
-Leu-OCH3, DCC, HOBT, TsOH, Et3N, THF, 0°C, 91%;
(iv) LiOH, THF/H2O, 0°C, 95%; (v) H2, Pd/C, MeOH, 50°C,
93%.