C O M M U N I C A T I O N S
[PhBiPrP3]CosNdNMe (12, 68%), which exhibited a very similar
νNN( NN) stretch 1599(1542) cm-1 and a solution moment indicative
15
of low-spin cobalt(II) (1.92 µB). Complex 4a also reacted cleanly
with trimethylsilyl chloride to generate [PhBPiPr3]CosNdNSiMe3
(13, 79%; νNN( NN) ) 1654(1596) cm-1; 2.08 µB). The latter product
15
could be obtained in good yield by a more direct procedure that
involved stirring a solution of chloride 2 in the presence of Me3-
SiCl and Na/Hg amalgam under nitrogen.
These data allow us to summarize several salient features of the
chemistry described herein: The [PhBPiPr3] ligand has been used
to isolate a single iron center in a pseudo-tetrahedral environment
in which a single binding site is compatible with coordination of
N2, diazenido (N2Me), and imide (NR). Moreover, N2 uptake/
coordination by 4-coordinate iron has been established for the
formal oxidation states M(0), M(+0.5), and M(+1). Methylation
of Fe0(N2)- to produce FeII(N2Me) constitutes a two-electron redox
process at iron. The additional observation of a separate two-electron
redox process, that of oxidative nitrene transfer (FeLI f FeIIIt
NR), establishes that the “[PhBPiPr3]Fe” platform will support four
formal oxidation states (Fe0, FeI, FeII, FeIII), in addition to two
discrete two-electron redox couples (Fe0/II and FeI/III). An analogous
set of observations has been made with the related cobalt system.
These features collectively motivate further development of the
present first-row systems into possible models for functional
nitrogen fixation.
Figure 1. Displacement ellipsoid representation of {([PhBPiPr3]Fe)2(µ-N2)}-
{Na(THF)6} (7). Hydrogen atoms have been removed for clarity. Selected
bond distances (Å) and angles (deg), for 7: Fe-N 1.813(2), N-N′ 1.171-
(4), Fe-P1 2.292(1), Fe-P2 2.278(1), Fe-P3 2.290(1); N′-N-Fe 178.0-
(3), P1-Fe-P2 96.93(4), P1-Fe-P3 97.96(4), P2-Fe-P3 97.22(4),
N-Fe-P1 118.88(9), N-Fe-P2 109.66(9), N-Fe-P3 129.83(9).
Acknowledgment. This work was supported by a DOE PE-
CASE award. T.A.B. is grateful for a Department of Defense
graduate research fellowship.
Supporting Information Available: Complete experimental pro-
cedures and characterization data, and crystallographic data (PDF, CIF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. ReV. 1978, 78, 589.
(b) Leigh, G. J. Acc. Chem. Res. 1992, 25, 177. (c) Yandulov, D. V.;
Schrock, R. R. Science 2003, 301, 76. (d) Yandulov, D. V.; Schrock, R.
R. Inorg. Chem. 2003, 42, 796.
(2) (a) Hidai, M.; Mizobe, Y. Chem. ReV. 1995, 95, 1115. (b) Laplaza, C. E.;
Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.;
George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623. (c)
Peters, J. C.; Cherry, J. P. F.; Thomas, J. C.; Baraldo, L.; Mindiola, D. J.;
Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1999, 121, 10053.
(3) (a) Hughes, D. L.; Leigh, G. J.; Jimeneztenorio, M.; Rowley, A. T. J.
Chem. Soc., Dalton Trans. 1993, 75. (b) George, T. A.; Rose, D. J.; Chang,
Y. D.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295. (c) Smith, J.
M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.;
Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222.
(4) Yamamoto and co-workers have reported on 4-coordinate tris(phosphine)-
cobalt complexes that coordinate N2 and liberate NH3/N2H4 on protonation.
They also provide IR and combustion analysis data for a nominally
4-coordinate Fe(N2) species, [EtFe(N2)(PPh3)2]Mg(THF)4], but no struc-
tural data for this latter species. See: Yamamoto, A.; Miura, Y.; Ito, T.;
Chen, H., Iri, K.; Ozawa, F. Organometallics 1983, 2, 1429.
(5) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.;
Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.
(6) (a) Thorneley, R. N. F.; Lowe, D. In Molybdenum Enzymes; Spiro, T. G.,
Ed.; Wiley-Interscience: New York, 1985. (b) Lovell, T.; Li, J.; Case,
D. A.; Noodleman, L. J. Am. Chem. Soc. 2002, 124, 4546. (c) Sellmann,
D.; Sutter, J. Acc. Chem. Res. 1997, 30, 460. (d) Siemann, S.; Schneider,
K.; Drottboom, M.; Muller, A. Eur. J. Biochem. 2002, 269, 1650. (e)
Krahn, E.; Weiss, B. J. R.; Krockel, M.; Groppe, J.; Henkel, G.; Cramer,
S. P.; Trautwein, A. X.; Schneider, K.; Muller, A. J. Biol. Inorg. Chem.
2002, 7, 37.
(7) (a) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002,
124, 11238. (b) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem.
Soc. 2003, 125, 322.
(8) (a) Thyagarajan, S.; Shay, D. T.; Incarvito, C. D.; Rhenigold, A. L.;
Theopold, K. H. J. Am. Chem. Soc. 2003, 15, 440. (b) Detrich, J. L.;
Konecny, R.; Vetter, W. M.; Doren, D.; Rheingold, A. L.; Theopold, K.
H. J. Am. Chem. Soc. 1996, 118, 1703.
(9) Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.
(10) Greco, G. E.; Schrock, R. R. Inorg. Chem. 2001, 40, 3861.
(11) Crystallographic data obtained for 4a, 8, and 10 have been placed in the
Supporting Information.
Figure 2. Displacement ellipsoid representation of [PhBPiPr3]FetNAd (9).
Hydrogen atoms have been removed for clarity. Selected bond distances
(Å) and angles (deg), for 9: Fe-N 1.638(2), Fe-P1 2.260(1), Fe-P2 2.297-
(1), Fe-P3 2.263(1); C28-N-Fe 176.0(2), P1-Fe-P2 91.05(2), P1-Fe-
P3 91.56(3), P2-Fe-P3 92.39(3), N-Fe-P1 121.62(7), N-Fe-P2
130.03(7), N-Fe-P3 120.27(7).
Structural data for related 10 have been placed in the Supporting
Information.
The anionic N2 adducts 3 and 4 appear well-poised for further
elaboration at the coordinated N2 functionality. This is significant
because the direct conversion of coordinated N2 to a coordinated
diazenido (N2R-) and/or hydrazido (N2R22-) species by simple
addition of an electrophile (e.g., R+) has, to our knowledge, not
been established for a first-row transition metal ion.3,4 We were
thus gratified to find that the simple addition of methyl tosylate
(MeOTs) to a THF solution of 3 effected a modest color change
15NN)
from brown to gold, along with a concomitant shift in its νNN(
vibration to 1597(1538) cm-1, characteristic of a coordinated,
monodentate diazenido functionality.1 A neutral, benzene-soluble
product was isolated from the reaction mixture that analyzed as
the diazenido complex [PhBPiPr3]FesNdNMe (11, 56%), consistent
with its magnetic susceptibility (S ) 2, 4.93 µB, Evans). A similar
protocol converted 4a to the amber-colored complex
JA036687F
9
J. AM. CHEM. SOC. VOL. 125, NO. 36, 2003 10783