Communications
Wiley-VCH, Weiheim, 1996, chap. 3.1; b) Chiral Catalyst Immo-
The ionic liquid layer can be readily separated from the reaction
mixture by removing the cosolvent CH2Cl2 under vacuum first,
followed by extraction of the product and any starting material
with diethyl ether.
bilization and Recycling (Eds.: D. E. De Vos, I. F. J. Vankelecom,
P. A. Jacobs), Wiley-VCH, Weiheim, 2000; c) N. E. Leadbeater,
M. Marco, Chem. Rev. 2002, 102, 3217.
[13] While the poor recyclability of 3 could be attributed in part to
the deactivation of the catalytically active Ru–methylidene
intermediate formed in the initial turnover, we believe that the
diminished activity of the recovered catalyst in the ionic liquid
layer is largely due to the extraction of 3 into the diethyl ether
layer. To probe this possibility, a solution of N-tosyldiallylamine
in [Bmim]PF6/CH2Cl2 (1:9 v/v, 0.05m) was treated with 5 mol%
of 3 at 508C for 2h. After separation of the crude reaction
product from the ionic liquid layer, 1H NMR analysis revealed a
complete conversion of the diene and the presence of catalyst 3
(as evidenced by its carbene signal at d = 17.4 ppm) in the crude
reaction mixture. The crude reaction mixture was then dissolved
in CH2Cl2 and recharged with another portion of the diene. After
heating the reaction mixture to reflux for 2h, it was analyzed by
1H NMR spectroscopy, which indicated a 98% conversion of the
diene. A similar reaction was performed using the recovered
ionic liquid. Only 22% of the added diene was found to be
converted into the cyclized product.
[3] Selected recent reviews on ionic liquids and their application in
transition-metal-catalyzed reactions: a) T. Welton, Chem. Rev.
1999, 99, 2071; b) P. Wasserscheid, W. Keim, Angew. Chem. 2000,
112, 3926; Angew. Chem. Int. Ed. 2000, 39, 3772; c) R. Sheldon,
Chem. Commun. 2001, 2399; d) J. Dupont, R. F. de Souza, P. A.
Suarez, Chem. Rev. 2002, 102, 3667.
[4] Selected reviews on olefin metathesis: a) M. Schuster, S.
Blechert, Angew. Chem. 1997, 109, 2 12 4A; ngew. Chem. Int.
Ed. Engl. 1997, 36, 2036; b) S. K. Armstrong, J. Chem. Soc.
Perkin Trans. 1 1998, 371; c) R. H. Grubbs, S. Chang, Tetrahe-
dron 1998, 54, 4413; d) A. Fürstner, Angew. Chem. 2000, 112,
3140; Angew. Chem. Int. Ed. 2000, 39, 3012; e) T. M. Trnka,
R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18.
[5] P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996,
118, 100.
[6] a) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1,
953; for related catalysts, see b) M. Scholl, T. M. Trnka, J. P.
Morgan, R. H. Grubbs, Tetrahedron Lett. 1999, 40, 2 2 47; c) J.
Huang, E. D. Stevens, S. P. Nolan, J. F. Petersen, J. Am. Chem.
Soc. 1999, 121, 2674.
[7] a) J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, A. H.
Hoveyda, J. Am. Chem. Soc. 1999, 121, 791; b) S. B. Garber,
J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc.
2000, 122, 8168; for related catalysts, see c) H. Wakamatsu, S.
Blechert, Angew. Chem. 2002, 114, 832; Angew. Chem. Int. Ed.
2002, 41, 794; d) H. Wakamatsu, S. Blechert, Angew. Chem.
2002, 114, 2509; Angew. Chem. Int. Ed. 2002, 41, 2403; e) K.
Crela, S. Harutyunyan, A. Michrowska, Angew. Chem. 2002, 114,
4210; Angew. Chem. Int. Ed. 2002, 41, 4038.
[14] NMR data of 13: 1H NMR (500 MHz, CDCl3): d = 8.48 (s, 1H),
7.24 (d, J = 17.5 Hz, 2H), 7.03–6.98 (m, 2H), 6.82(d, J = 8.8 Hz,
1H), 6.73 (dd, J = 3.2, 8.8 Hz, 1H), 5.72 (d, J = 17.9 Hz, 1H), 5.24
(d, J = 11.4 Hz, 1H), 4.37 (hept, J = 6.1 Hz, 1H), 4.20 (t, J =
7.4 Hz, 2H), 3.94 (t, J = 5.9 Hz, 2H), 3.85 (s, 3H), 2.05 (quint,
J = 7.4 Hz, 2H), 1.74–1.80 (m, 2H), 1.30 ppm (d, J = 6.1 Hz,
6H); 13C NMR (125 MHz, CDCl3): d = 152.9, 149.6, 136.0, 131.6,
129.2, 123.5, 122.0, 117.1, 114.8, 114.4, 111.9, 72.3, 67.4, 49.8, 36.2,
27.0, 25.8, 22.2 ppm.
[15] The presence of free iodide in the reaction media may adversely
effect the activity of Grubbs-type Ru catalysts as a result of
potential ligand exchange, see a) E. L. Dias, S. T. Nguyen, R. H.
Grubbs, J. Am. Chem. Soc. 1997, 119, 3887; b) M. S. Sanford,
J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543.
[8] Q. Yao, Angew. Chem. 2000, 112, 4060; Angew. Chem. Int. Ed.
2000, 39, 3896.
[9] a) S. T. Nguyen, R. H. Grubbs, J. Organomet. Chem. 1995, 497,
195; b) M. Ahmed, A. G. M. Barrett, D. C. Braddock, S. M.
Cramp, P. A. Procopiou, Tetrahedron Lett. 1999, 40, 8657; c) M.
Ahmed, T. Arnauld, A. G. M. Barrett, D. C. Braddock, P. A.
Procopiou, Synlett 2000, 1007; d) S. C. Schürer, S. Gessler, N.
Buschmann, S. Blechert, Angew. Chem. 2000, 112, 4062; Angew.
Chem. Int. Ed. 2000, 39, 3898; e) L. Jafarpour, S. P. Nolan, Org.
Lett. 2000, 2, 4075; f) J. Dowden, J. Savovic, Chem. Commun.
2001, 37; g) M. Mayr, B. Mayr, M. R. Buchmeiser, Angew. Chem.
2001, 113, 3957; Angew. Chem. Int. Ed. 2001, 40, 3839; h) J. S.
Kingsbury, S. B. Garber, J. M. Giftos, B. L. Gray, M. M. Okamoto,
R. A. Farrer, J. T. Fourkas, A. H. Hoveyda, Angew. Chem. 2001,
113, 4381; Angew. Chem. Int. Ed. 2001, 40, 4251; i) S. Randl, N.
Buschmann, S. J. Connon, S. Blechert, Synlett 2001, 10, 1547; j) L.
Jafarpour, M. P. Heck, C. Baylon, H. L. Lee, C. Mioskowski, S. P.
Nolan, Organometallics 2002, 21, 671; k) S. J. Connon, A. M.
Dunne, S. Blechert, Angew. Chem. 2002, 114, 3835; Angew. Chem.
Int. Ed. 2002, 41, 3989; l) K. Crela, M. Tryznowski, M. Bieniek,
Tetrahedron Lett. 2002, 43, 9055; m) S. Gibson, V. M. Swamy, Adv.
Synth. Catal. 2002, 344, 619; n) M. Mayr, M. R. Buchmeiser, K.
Wurst, Adv. Synth. Catal. 2002, 344, 712 .
1
[16] Data of 6: H NMR (500 MHz, [D6]acetone): d = 17.37 (d, J =
5.2Hz, 1H), 9.06 (s, 1H), 7.83 (s, 1H), 7.73 (s, 1H), 7.42(d, J =
2.7 Hz, 2H), 7.30 (dd, J = 2.8, 9.1 Hz, 1H), 7.24 (d, J = 9.1 Hz,
1H), 5.30 (hept, J = 6.0 Hz, 1H), 4.51 (t, J = 7.3 Hz, 2H), 4.13 (t,
J = 6.0 Hz, 2H), 4.07 (s, 3H), 2.41 (m, 3H), 2.22–1.26 (m, 34H),
1.75 ppm (d, J = 6.2Hz, 6H); 13C NMR (125 MHz, [D6]acetone):
d = 154.5, 147.1, 144.2, 137.0, 124.0, 122.6, 115.4, 113.8, 107.3,
75.2, 67.8, 49.5, 36.0, 35.4 (d, JCP = 25.3 Hz), 29.8, 27.5 (d, JCP
=
10.1 Hz), 27.0, 26.1, 25.7, 21.5 ppm; elemental analysis (%) calcd
for C36H58Cl2F6N2O2P2Ru: C 48.11, H 6.50, N 3.12; found: C
48.09, H 6.45, N 3.05.
[17] Q. Yao, Org. Lett. 2002, 4, 428.
[18] Q. Yao, Org. Lett. 2001, 3, 2069.
[19] M. Mori, N. Sakakibara, A. Kinoshita, J. Org. Chem. 1998, 63,
6082.
[10] [Bmim]PF6 can either be purchased from Acros Organics at a
relatively low cost or readily made in large quantities by simple
procedures.
[11] a) R. C. Buijsman, E. van Vuuren, J. G. Sterrenburg, Org. Lett.
2001, 3, 3785; b) D. Semeril, H. Olivier-Bourbigou, C. Bruneau,
P. H. Dixneuf, Chem. Commun. 2002, 146; c) K. G. Mayo, E. H.
Nearhoof, J. J. Kiddle, Org. Lett. 2002, 4, 1567; d) S. Csihony, C.
Fischmeister, C. Bruneau, I. T. Horvath, P. H. Dixneuf, New J.
Chem. 2002, 26, 1667.
[12] [Bmim]PF6 is essentially nonvolatile and almost completely
insoluble in nonpolar solvents such as hexane and diethyl ether.
3398
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 3395 – 3398