10.1002/anie.201908951
Angewandte Chemie International Edition
COMMUNICATION
[4]
[5]
C. A. Luque, J. A. Rey, Eur. J. Pharmacol. 2002, 440, 119–128.
K. X. Chen, F. G. Njoroge in Progress in Medicinal Chemistry (Eds. : G.
Lawton, D. R. Witty), Elsevier, 2010, pp. 1–36.
[19] Iron-catalyzed cross-coupling developed by Denmark et al. only gave
traces of the desired aryl product. S. E. Denmark, A. J. Cresswell, J. Org.
Chem. 2013, 78, 12593–12628.
[6]
[7]
US Patent 3,332,950 Endo, 1963.
[20] a) H. K. Hall, C. D. Smith, E. P. Blanchard, S. C. Cherkofsky, J. B. Sieja,
J. Am. Chem. Soc. 1971, 93, 121–130; b) X. Drujon, G. Riess, H. K. Hall,
A. B. Padias, Macromolecules 1993, 26, 1199–1205.
A. L. Castelhano, G. A. Cutting, A. J. Locke, Y. Mao, K. M. Mulvihill, R.
Norrie, A. J. O’Brien, S. R. Park, J. A. Rechka, A. M. Stevens, C. I.
Thomas, PCT Int. Patent Appl. US 2011/045807, 2011.
[8]
For recent examples of cyclobutanes in drug discovery, see: a) R. Nirogi,
A. Shinde, A. R. Mohammed, R. K. Badange, V. Reballi, T. R. Bandyala,
S. K. Saraf, K. Bojja, S. Manchineella, P. K. Achanta, K. K. Kandukuri, R.
Subramanian, V. Benade, R. C. Palacharla, P. Jayarajan, S. Pandey, V.
Jasti, J. Med. Chem. 2019, 62, 1203–1217; b) T. T. Wager, B. A.
Pettersen, A. W. Schmidt, D. K. Spracklin, S. Mente, T. W. Butler, H.
Howard, D. J. Lettiere, D. M. Rubitski, D. F. Wong, F. M. Nedza, F. R.
Nelson, H. Rollema, J. W. Raggon, J. Aubrecht, J. K. Freeman, J. M.
Marcek, J. Cianfrogna, K. W. Cook, L. C. James, L. A. Chatman, P. A.
Iredale, M. J. Banker, M. L. Hominski, J. B. Munzner, R. Y.
Chandrasekaran, J. Med. Chem. 2011, 54, 7602–7620; c) J. Slade, J.
Bajwa, H. Liu, D. Parker, J. Vivelo, G.-P. Chen, J. Calienni, E. Villhauer,
K. Prasad, O. Repič, T. J. Blacklock, Org. Process Res. Dev. 2007, 11,
825–835.
[9]
Carbocycles ranked by descending frequency in drugs: Cyclohexane 6th,
Cyclopropane 10th, Cyclopentane 18th and Cyclobutane 55th. For more
details, see: R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem.
2014, 57, 5845–5859.
[10] K. B. Wiberg, G. M. Lampman, R. P. Ciula, D. S. Connor, P. Schertler, J.
Lavanish, Tetrahedron 1965, 21, 2749–2769.
[11] a) T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem. 2011, 123,
7884–7896; Angew. Chem. Int. Ed. 2011, 50, 7741–7752; b) Z. Maksić,
L. Klasinc, M. Randić, Theoret. Chim. Acta 1966, 4, 273–286; c) M. D.
Newton, J. M. Schulman, J. Am. Chem. Soc. 1972, 94, 767–773; c) S.
Hoz, D. Aurbach, Tetrahedron 1979, 35, 881–883. For a book chapter,
see: S. Hoz in The Chemistry of the Cyclopropyl Group, Vol. 1 (Ed.: Z.
Rappoport), John Wiley & Sons, Ltd., 1987, pp. 1121–1191.
[12] a) R. Gianatassio, J. M. Lopchuk, J. Wang, C.-M. Pan, L. R. Malins, L.
Prieto, T. A. Brandt, M. R. Collins, G. M. Gallego, N. W. Sach, J. E.
Spangler, H. Zhu, J. Zhu, P. S. Baran, Science 2016, 351, 241–246; b)
J. M. Lopchuk, K. Fjelbye, Y. Kawamata, L. R. Malins, C.-M. Pan, R.
Gianatassio, J. Wang, L. Prieto, J. Bradow, T. A. Brandt, M. R. Collins,
J. Eleraas, J. Ewanicki, W. Farrell, W. Farrell, O. O. Fadeyi, G. M.
Gallego, J. J. Mousseau, P. Olivier, N. W. Sach, J. K. Smith, J. E.
Spangler, H. Zhu, J. Zhu, P. S. Baran, J. Am. Chem. Soc. 2017, 139,
3209–3226; c) J. Nugent, C. Arroniz, B. R. Shire, A. J. Sterling, H. D.
Pickford, M. L. J. Wong, S. J. Mansfield, D. F. J. Caputo, B. Owen, J. J.
Mousseau, F. Duarte, E. A. Anderson ACS Catal. 2019, 9, 9568–9574.
[13] a) J. Kanazawa, K. Maeda, M. Uchiyama, J. Am. Chem. Soc. 2017, 139,
17791–17794; b) A. Fawcett, T. Biberger, V. K. Aggarwal, Nat. Chem.
2019, 11, 117–122; c) A. Fawcett, A. Murtaza, C. H. U. Gregson, V. K.
Aggarwal, J. Am. Chem. Soc. 2019, 141, 4573–4578.
[14] For addition of thiyl radicals, see: H. K. Hall, E. P. Blanchard, S. C.
Cherkofsky, J. B. Sieja, W. A. Sheppard, J. Am. Chem. Soc. 1971, 93,
110–120; for addition of α-keto radicals, see: P. G. Gassman, G. T.
Carroll, J. Org. Chem. 1984, 49, 2074–2076; for addition of carbon-
centered radicals, see: a) X. Wu, W. Hao, K.-Y. Ye, B. Jiang, G. Pombar,
Z. Song, S. Lin, J. Am. Chem. Soc. 2018, 140, 14836–14843; b) M. Silvi,
V. K. Aggarwal, J. Am. Chem. Soc. 2019, 141, 9511–9515; c) C. J. Pratt,
R. A. Aycock, M. D. King, N. T. Jui, Synlett 2019, DOI 10.1055/s-0039-
1690197.
[15] L. Chu, C. Ohta, Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc. 2014,
136, 10886–10889.
[16] See Supporting Information for more details.
[17] For another example of the beneficial role of water in single-electron
transfer chemistry, see: a) C. C. Nawrat, C. R. Jamison, Y. Slutskyy, D.
W. C. MacMillan, L. E. Overman, J. Am. Chem. Soc. 2015, 137, 11270–
11273; b) T. Hoshikawa, M. Inoue, Chem. Sci. 2013, 4, 3118–3123.
[18] Under optimized condition in Table 1, cyclohexyl radical failed to provide
the adduct with BCB 2a. However, cyclohexyl radical readily reacted with
the phenyl vinyl sulfone 37 in 51% yield. More details and DFT
calculations given in Supporting Information.
This article is protected by copyright. All rights reserved.