Page 5 of 7
ACS Catalysis
Org. Chem. 2015, 2015, 7859-7868. (i) Ye, B.; Cramer, N. Chiral
detection of migration products (2q, 2r, 2v-x, Table 2) could
exclude this assumption. On the contrary, intramolecular
C(sp3)−H activation of Pd(II) species B will generate
cyclopalladium C before the insertion of CO. While
cyclopalladium C might coexist in equilibrium with E via the
formation of the alkyl palladium intermediate D, The carbonyl
palladium complexes F and G were then afforded by the
subsequent insertion of CO (path b).15 The final reductive
elimination from F and G furnishes the indanone products 2
and 2’, and regenerates Pd(0) catalyst. On the other hand, the
proposal described in path c that alkyl palladium intermediate
D might be inserted by CO could also be excluded by our
control experiment (eq. 1, Scheme 3).
Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-
Catalyzed C–H Functionalizations. Acc. Chem. Res. 2015, 48, 1308-
1318. (j) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord,
J. Mild Metal-Catalyzed C–H Activation: Examples and Concepts.
Chem. Soc. Rev. 2016, 45, 2900-2936. (k) Moselage, M.; Li, J.;
Ackermann, L. Cobalt-Catalyzed C–H Activation. ACS Catal. 2016,
6, 498-525. (l) Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. C–H
Functionalization of Azines. Chem. Rev. 2017, 117, 9302-9332. (m)
Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-
Metal-Catalyzed C–H Alkylation Using Alkenes. Chem. Rev. 2017,
117, 9333-9403. (n) Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed
C–H Bond Activation. Chem. Rev. 2017, 117, 9086-9139.
(2) For selected reviews, see: (a) Liu, Q.; Zhang, H.; Lei, A.
Oxidative Carbonylation Reactions: Organometallic Compounds (R–
M) or Hydrocarbons (R–H) as Nucleophiles. Angew. Chem., Int. Ed.
2011, 50, 10788-10799. (b) Wu, X.-F.; Neumann, H.; Beller, M.
Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations.
Chem. Rev. 2013, 113, 1-35. (c) Peng, J.-B.; Wu, F.-P.; Wu, X.-F.
First-Row Transition-Metal-Catalyzed Carbonylative Transformations
of Carbon Electrophiles. Chem. Rev. 2019, 119, 2090−2127.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In conclusion, we have developed a novel palladium-
catalyzed C(sp3)–H carbonylation of alkylated aryl triflates or
bromides under 1 atm of CO. The combination of appropriate
NHC ligands with palladium facilitates this transformation
successfully. Mechanism studies suggest that the insertion of
carbon monoxide into two five-membered cyclopalladium
species, which are generated via palladium migration, is the
crucial step of this transformation. This method offers a
solution for construction of all carbon indanones, and paves an
efficient way for synthesizing bioactive compounds containing
such valuable synthons and pharmacophores. Further
exploration of the detailed mechanism and application of this
strategy to synthesize bioactive molecules are still ongoing in
our laboratory.
(3) Fujiwara, Y.; Takaki, K.; Watanabe, J.; Uchida, Y.; Taniguchi,
H. Thermal Activation of Alkane C–H Bonds by Palladium Catalysts.
Carbonylation of Alkanes with Carbon Monoxide. Chem. Lett. 1989,
1687-1688.
(4) For selected examples, see: (a) Ryu, I.; Tani, A.; Fukuyama, T.;
Ravelli, D.; Fagnoni, M.; Albini, A. Atom-Economical Synthesis of
Unsymmetrical Ketones through Photocatalyzed C–H Activation of
Alkanes and Coupling with CO and Electrophilic Alkenes. Angew.
Chem., Int. Ed. 2011, 50, 1869-1872. (b) Xie, P.; Xie, Y.; Qian, B.;
Zhou, H.; Xia, C.; Huang, H. Palladium-Catalyzed Oxidative
Carbonylation of Benzylic C–H Bonds via Nondirected C(sp3)–H
Activation. J. Am. Chem. Soc. 2012, 134, 9902-9905. (c) Okada, M.;
Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli, D.; Fagnoni, M. Sunlight
Photocatalyzed Regioselective β-alkylation and Acylation of
Cyclopentanones. Chem. Sci. 2014, 5, 2893-2898. (d) Li, Y.; Zhu, F.;
Wang, Z.; Wu, X.-F. Copper-Catalyzed Carbonylative Synthesis of
Aliphatic Amides from Alkanes and Primary Amines via C(sp3)–H
Bond Activation. ACS Catal. 2016, 6, 5561-5564. (e) Li, Y.; Dong,
K.; Zhu, F.; Wang, Z.; Wu, X.-F. Copper-Catalyzed Carbonylative
Coupling of Cycloalkanes and Amides. Angew. Chem., Int. Ed. 2016,
55, 7227-7230. (f) Lu, L.; Cheng, D.; Zhan, Y.; Shi, R.; Chiang, C.-
W.; Lei, A. Metal-Free Radical Oxidative Alkoxycarbonylation and
Imidation of Alkanes. Chem. Commun. 2017, 53, 6852-6855.
ASSOCIATED CONTENT
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
* xswang77@ustc.edu.cn.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(5) (a) Yoo, E. J.; Wasa, M.; Yu, J.-Q. Pd(II)-Catalyzed
Carbonylation of C(sp3)–H Bonds: A New Entry to 1,4-Dicarbonyl
Compounds. J. Am. Chem. Soc. 2010, 132, 17378-17380. (b)
Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N.
Highly Regioselective Carbonylation of Unactivated C(sp3)–H Bonds
by Ruthenium Carbonyl. J. Am. Chem. Soc. 2011, 133, 8070-8073.
(6) For selected examples, see: (a) Wu, X.; Zhao, Y.; Ge, H. Direct
Aerobic Carbonylation of C(sp2)–H and C(sp3)–H Bonds through
Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source. J. Am.
Chem. Soc. 2015, 137, 4924-4927. (b) Wang, C.; Zhang, L.; Chen, C.;
Han, J.; Yao, Y.; Zhao, Y. Oxalyl Amide Assisted Palladium-
Catalyzed Synthesis of Pyrrolidones via Carbonylation of γ-C(sp3)–H
Bonds of Aliphatic Amine Substrates. Chem. Sci. 2015, 6, 4610-4614.
(c) Wang, P.-L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang, X.-S. Pd-
Catalyzed C(sp3)–H Carbonylation of Alkylamines: A Powerful
Route to γ-Lactams and γ-Amino Acids. Org. Lett. 2015, 17, 3698-
3701. (d) Hernando, E.; Villalva, J.; Martínez, Á. M.; Alonso, I.;
Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Palladium-Catalyzed
Carbonylative Cyclization of Amines via γ-C(sp3)–H Activation:
Late-Stage Diversification of Amino Acids and Peptides. ACS Catal.
2016, 6, 6868-6882. (e) Willcox, D.; Chappell, B. G. N.; Hogg, K. F.;
Calleja, J.; Smalley, A. P.; Gaunt, M. J. A General Catalytic β-C–H
Carbonylation of Aliphatic Amines to β-Lactams. Science 2016, 354,
851-857. (f) Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki,
K.; Gaunt, M. J. Selective Palladium(II)-Catalyzed Carbonylation of
Methylene β-C–H Bonds in Aliphatic Amines. Angew. Chem., Int. Ed.
2017, 56, 11958-11962. (g) Barsu, N.; Bolli, S. K.; Sundararaju, B.
We gratefully acknowledge the National Basic Research Program
of China (973 Program 2015CB856600), the National Science
Foundation of China (21772187, 21522208) for financial support.
REFERENCES
(1) For selected reviews, see: (a) Lyons, T. W.; Sanford, M. S.
Palladium-Catalyzed Ligand-Directed C–H Functionalization
Reactions. Chem. Rev. 2010, 110, 1147-1169. (b) Wencel-Delord, J.;
Dröge, T.; Liu, F.; Glorius, F. Towards Mild Metal-Catalyzed C–H
Bond Activation. Chem. Soc. Rev. 2011, 40, 4740-4761. (c) Engle, K.
M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak Coordination as a Powerful
Means for Developing Broadly Useful C–H Functionalization
Reactions. Acc. Chem. Res. 2012, 45, 788-802. (d) Ackermann, L.
Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by
C–H/Het–H Bond Functionalizations. Acc. Chem. Res. 2014, 47, 281-
295. (e) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A.
Oxidative Coupling between Two Hydrocarbons: An Update of
Recent C–H Functionalizations. Chem. Rev. 2015, 115, 12138-12204.
(f) Song, G.; Li, X. Substrate Activation Strategies in Rhodium(III)-
Catalyzed Selective Functionalization of Arenes. Acc. Chem. Res.
2015, 48, 1007-1020. (g) Daugulis, O.; Roane, J.; Tran, L. D.
Bidentate, Monoanionic Auxiliary-Directed Functionalization of
Carbon-Hydrogen Bonds. Acc. Chem. Res. 2015, 48, 1053-1064. (h)
Miao, J.; Ge, H. Recent Advances in First-Row-Transition-Metal-
Catalyzed Dehydrogenative Coupling of C(sp3)–H Bonds. Eur. J.
ACS Paragon Plus Environment