H. Chabane et al. / Tetrahedron Letters 44 (2003) 6709–6711
6711
611 and finally gives pyridone 7. In contrast, the two
dimethylcyclopentadienones 9 and 15 gave no pyri-
dones, possibly because of reduced stability of the key
carbonium ions analogous to 20; furthermore the pres-
ence of a methyl group provides a lower energy path-
way for the conversion of 9 into the amine 10 (Scheme
6). The methylene isomer 14 of 9 is well set up to
undergo an ene reaction to give the bisaminosulfane 11
(Scheme 6). The [4+2] cycloaddition—2,3-sigmatropic
rearrangement sequence (Scheme 5) in the reaction of
the 2,5-dimethyl analogue 15 with 2 and 5 leads to the
observed adducts 16 and 17 (Scheme 4).
Thus we have shown that the readily available
cyclopentadienones react with some NꢀS reagents, also
readily available, to provide useful syntheses of some
new and rare structures. These are 1,2,5-thiadiazolidi-
nes and imidazolones derived therefrom, pyridones,
diaminosulfanes, an aminocyclopentenone, and the first
unoxidised 1,2,3-oxathiazolidine 16,12 and a mechanis-
tic framework is proposed to account for their
formation.
References
Scheme 5.
1. Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem.
Rev. 1965, 65, 261–367.
2. (a) Garigipati, R. S.; Freyer, A. J.; Whittle, R. R.;
Weinreb, S. M. J. Am. Chem. Soc. 1984, 106, 7861–7867;
(b) Natsugari, H.; Whittle, R. R.; Weinreb, S. M. J. Am.
Chem. Soc. 1984, 106, 7867–7872; (c) Bussas, R.; Kresze,
G. Liebigs Ann. Chem. 1982, 545–563.
3. Duan, X.-L.; Perrins, R.; Rees, C. W. J. Chem. Soc.,
Perkin Trans. 1 1997, 1617–1622.
4. Laaman, S. M.; Meth-Cohn, O.; Rees, C. W. Arkivoc
2002, ii, 90–94.
5. Shi, S.; Katz, T. J.; Young, B. V.; Liu, L. J. Org. Chem.
1995, 60, 1285–1297.
6. Laaman, S. M.; Meth-Cohn, O.; Rees, C. W. Synthesis
1999, 757–759.
7. Smyth, T. P.; O’Donnell, M. E.; O’Connor, M. J.; St.
Ledger, J. O. J. Org. Chem. 1998, 63, 7600–7618.
8. Crystallographic data (excluding structure factors) for the
structures in this paper, have been deposited with the
Cambridge Crystallographic Data Centre as supplemen-
tary publication numbers CCDC 198788 to 198790.
Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2
1EZ, UK (fax: +44(0)-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk).
Scheme 6.
9. Compound 10 exhibits spontaneous resolution upon crys-
tallisation, though the absolute chirality of the molecules
in the crystal studied could not be determined from the
X-ray data.
on the electrophilicity of the dienophile and the
medium.
10. Ammon, H. L.; Seymour, R. J.; Huffman, W. M.;
D’Silva, T. D. J. Acta Crystallogr., Sect. C 1995, 51,
1619–1621.
11. (a) McKillop, A.; Zelesko, M. J.; Taylor, E. C. Tetra-
hedron Lett. 1968, 4945–4948; (b) Afarinkia, K.; Mah-
mood, F. Tetrahedron Lett. 1998, 39, 493–496.
12. Examples of the S-oxides and -dioxides are known, e.g.:
Posakony, J. J.; Grierson, J. R.; Tewson, T. J. J. Org.
Chem. 2002, 67, 5164–5169.
In the absence of electrophiles such as thionyl chloride
the initial adducts undergo a thermal 2,3-sigmatropic
rearrangement (arrows in 18) to give the formal [3+2]
adducts 8, 12, 16 and 17. With tetracyclone 1 in the
presence of SOCl2 and pyridine, the adduct 18 can
undergo a faster acid-catalysed rearrangement (1920)
via a stabilised 1,3-diphenylallylic carbonium ion 20, to
give N-ethoxcarbonylpyridone 21 which rearranges to