C O M M U N I C A T I O N S
(Table 1, entries 1, 2) may be rationalized. Finally, consistent with
this high racemization t1/2 estimate for 13c, we find that, after a
deprotonation time of 8 h at -78 °C, benzylation of the enolate of
(3S)-2c occurs in 92% ee (cf. Table 1, entry 2).
Acknowledgment. We thank the National Science Foundation
(CHE-0213525), the Jeffress Memorial Trust, and the Virginia Tech
Department of Chemistry for financial support.
Supporting Information Available: Experimental procedures,
spectroscopic data and HPLC chromatograms, and computational details
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
Figure 1. B3LYP/6-31G* equilibrium geometry and ring inversion
transition structure of N-i-Pr enolate anion 13c (relative free energies at
B3LYP/6-31+G*//B3LYP/6-31G*).
Scheme 2. Correlation of Benzodiazepines 5 and 6 by
Conversion to the Corresponding Quaternary Amino Acids 11 and
References
(1) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R.
M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang,
R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K.
A.; Springer, J. P.; Hirschfield, J. J. Med. Chem. 1988, 31, 2235-2246.
(2) (a) Ellman, J. A. Acc. Chem. Res. 1996, 29, 132-143. (b) Wu, Z.; Ercole,
F.; FitzGerald, M.; Perera, S.; Riley, P.; Campbell, R.; Pham, Y.; Rea,
P.; Sandanayake, S.; Mathieu, M. N.; Bray, A. M.; Ede, N. J. J. Comb.
Chem. 2003, 5, 166-171.
12
(3) The only published route to such compounds involves lipase-catalyzed
acylation of prochiral 3,3-bis(hydroxymethyl)-1,4-benzodiazepin-2-
ones: Avdagic, A.; Lesac, A.; Majer, Z.; Hollosi, M.; Sunjic, V. HelV.
Chim. Acta 1998, 81, 1567-1582.
(4) Linscheid, P.; Lehn, J.-M. Bull. Chim. Soc. Fr. 1967, 992-997.
(5) Konowal, A.; Snatzke, G.; Alebic-Kolbah, T.; Kajfez, F.; Rendic, S.;
Sunjic, V. Biochem. Pharm. 1979, 28, 3109-3113.
(6) The sense of chirality of the ring has traditionally been described using
the helical descriptors (M)- and (P)-, based on the sign of the τ2345 torsional
angle. The same sense of chirality is noted using the more easily perceived
τ(R1)178 or τ2176 torsional angles.
in 94-99% ee (Table 1, entries 3-6). High enantioselectivities are
also observed in methylation and allylation of the enolate of Phe-
derived (3S)-3c (Table 1, entries 7, 8). Interestingly, H and 13C
1
(7) Application of the Eyring equation allows the racemization t1/2 values
(298 K) of 1a-c to be estimated as 60 µs, 0.9 s, and 2.8 min.
(8) Gilman, N. W.; Rosen, P.; Earley, J. V.; Cook, C.; Todaro, L. J. J. Am.
Chem. Soc. 1990, 112, 3969-3978.
NMR spectroscopy demonstrate that, unlike 2c and 3c, 3,3-
disubstituted benzodiazepines 4-8, 10 exist as ∼1:1 mixtures of
(M)- and (P)-conformers, consistent with the similar local steric
demands of the C3 substituents.15
The stereochemical course of these reactions appears to be
uniformly retentive. Retentive deuteration of the enolate of (3S)-
(+)-2c was established by comparison of (+)-9 with the starting
material. Retentive alkylation of the enolate of (3S)-2c was
established by hydrolysis of (+)-5 and (+)-6 to the corresponding
quaternary amino acids 11 and 12 (Scheme 2).
(9) Sunjic, V.; Lisini, A.; Sega, A.; Kovac, T.; Kajfez, F.; Ruscic, B. J.
Heterocycl. Chem. 1979, 16, 757-761.
(10) Paizs, B.; Simonyi, M. Chirality 1999, 11, 651-658.
(11) (a) Reitter, B. E.; Sachdeva, Y. P.; Wolfe, J. F. J. Org. Chem. 1981, 46,
3945-3949. (b) Decorte, E.; Toso, R.; Sega, A.; Sunjic, V.; Ruzic-Toros,
Z.; Kojic-Prodic, B.; Bresciani-Pahor, N.; Nardin, G.; Randaccio, L. HelV.
Chim. Acta 1981, 64, 1145-1149. (c) Kim, K.; Volkman, S. K.; Ellman,
J. A. J. Braz. Chem. Soc. 1998, 9, 375-379. (d) Goumri-Magnet, S.;
Guerret, O.; Gornitzka, H.; Cazaux, J. B.; Bigg, D.; Palacios, F.; Bertrand,
G. J. Org. Chem. 1999, 64, 3741-3744.
(12) Hart, B. R.; Rush, D. J.; Shea, K. J. J. Am. Chem. Soc. 2000, 122, 460-
465.
Retentive conversion of Phe-derived (3S)-3c to (3S)-(-)-5 was
confirmed by HPLC and optical rotation (Table 1, entries 2, 7).
The transformations of 2c and 3c described above can be viewed
as examples of Seebach’s “self-regeneration of stereocenters (SRS)”
principle.16 The novel feature here is the use of dynamic, confor-
mational chirality (rather than static, central chirality) to control
alkylation stereochemistry of the enolates; from this perspective,
these transformations also rely upon “memory of chirality”.17
Dynamic chirality of the enolates is suggested by the sensitivity
of the R-alkylation % ee to the size of the N1 substituent, and by
the calculated (B3LYP/6-31G*) equilibrium geometries and ring
inversion transition structures of the (des-chloro) enolate anions
13b,c (derived from 2b,c; 13c depicted in Figure 1).18 The
equilibrium geometries of enolates 13b,c are chiral and feature
essentially flat C3 carbons (sum of angles 358.5°, 359.0°). The ring
inversion transition structures of 13b,c indicate near eclipsing of
the N1 substituent (R1) and C8 (dihedral angles 13.4°, 12.8°).
B3LYP/6-31+G*//B3LYP/6-31G* activation free energies for ring
inversion at 195 K of 13b (N-Me) and 13c (N-i-Pr) are 12.4 and
17.5 kcal/mol, which correspond to racemization t1/2 (195 K) values
of 0.11 min and 970 h, respectively. Thus, the divergent stereo-
chemical outcomes for deprotonation/benzylation of 2b and 2c
(13) Less reactive alkylating agents (MeI, i-PrOTs) give partial racemization.
(14) No alkylation products are obtained in the absence of HMPA. If treatment
of the enolate with n-BuLi is not carried out before trapping, alkylation
and deuteration yields decrease, and significant amounts of starting material
are recovered. We suspect that enolate‚diisopropylamine complexes
produce starting material via an internal return mechanism, see: Seebach,
D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624-1654.
(15) 1H-1H EXSY NMR spectroscopy (297 K, CDCl3) of 5 indicates that the
conformers exchange at a rate of 0.2 s-1 (∆Gq ) 18.5 kcal/mol).
(16) Seebach, D.; Sting, A. R.; Hoffman, M. Angew. Chem., Int. Ed. Engl.
1996, 35, 2708-2748.
(17) (a) Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. 1991, 113, 9694-
9696. (b) Fuji, K.; Kawabata, T. Chem.-Eur. J. 1998, 4, 373-376. (c)
Wanyoike, G. N.; Onomura, O.; Maki, T.; Matsumura, Y. Org. Lett. 2002,
4, 1875-1877. (d) Brewster, A. G.; Jayatissa, J.; Mitchell, M. B.;
Schofield, A.; Stoodley, R. J. Tetrahedron Lett. 2002, 43, 3919-3922.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M.
W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian
98, revision A.11.1; Gaussian, Inc.: Pittsburgh, PA, 2001.
JA0365781
9
J. AM. CHEM. SOC. VOL. 125, NO. 38, 2003 11483