2676
G. Durand et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2673–2676
than the antioxidant protection induced by mixtures of
LAMPBN and LGT at concentrations above 50 mM
(Table 1) and by mixtures of LAMPBN and lipoate in
the whole concentration range from 0 to 500 mM
(Results not shown). Nevertheless, we observed that the
overall experimental antioxidant efficiency of one mole
of PBNLP kept lower than the theoretical antioxidant
capacities of LAMPBN and LGT mixtures indepen-
dently of the molar ratio (Table 1). Thus, the combi-
nation of water-soluble derivatives of PBN and lipoic
acid in an amphiphilic molecule PBNLP did not
induced synergistic interactions between these two
compounds, but it markedly diminished their antag-
onistic actions highlighted by the free radical-mediated
hemolysis test.
References and Notes
1. Richardson, J. S. Ann. N.Y. Acad. Sci. 1993, 695, 73.
2. Ames, B. N.;Shigenaga, M. K.;Hagen, T. M. Proc. Natl.
Acad. Sci. U.S.A 1993, 90, 7915.
3. Kontos, H. A. Chem. Biol. Int. 1989, 72, 229.
4. Floyd, R. A. FASEB J. 1990, 4, 2587.
5. Floyd, R. A.;Hensley, K.;Forster, M. J.;Kelleher-Anders-
son, J. A.;Wood, P. L. Mech. Aging Dev. 2002, 123, 1021.
6. Durand, G.;Polidori, A.;Salles, J.-P.;Pucci, B.
Med. Chem. Lett. 2003, 13, 859.
7. Packer, L.;Witt, E. H.;Tritschler, H. J. Free Rad. Biol.
Med. 1995, 19, 227.
8. Packer, L.;Tritschler, H. J.;Wessel, K. Free Rad. Biol.
Med. 1997, 22, 359.
9. Rosenberg, H. R.;Culik, R. Arch. Biochem. Biophys. 1959,
80, 86.
Bioorg.
10. Haramacki, N.;Assadnazari, H.;Zimmer, G.;Schepkin,
V.;Packer, L. Biochem. Mol. Biol. Int. 1995, 37, 591.
11. Thurich, T.;Bereiter-Hahn, J.;Schneider, M.;Zimmer, G.
Arzneim.-Forsch./Drug Res. 1998, 48, 13.
12. Coombes, J. S.;Powers, S. K.;Demirel, J.;Jessup, H. K.;
Vincent, K. L.;Hamilton, K. L.;Naito, H.;Shanely, R. A.;
Sen, C. K.;Packer, L.;Ji, L. L. Acta Physiol. Scand. 2000, 169,
261.
13. Lu, C.;Liu, Y. Arch. Biochem. Biophys. 2002, 406, 78.
14. Koufaki, M.;Calogeropoulou, T.;Detsi, A.;Roditis, A.;
Kourounakis, A. P.;Papazafiri, P.;Tsiakitzis, K.;Gaitanaki,
C.;Beis, I.;Kourounakis, P. N. J. Med. Chem. 2001, 44, 4300.
15. Harnett, J. J.;Auguet, M.;Viossat, I.;Dolo, C.;Bigg, D.;
Chabrier, P.-E. Bioorg. Med. Chem. Lett. 2002, 12, 1439.
16. Ouari, O.;Chalier, F.;Bonaly, R.;Tordo, P.;Pucci, B.
Chem. Soc. Perkin Trans. 2 1998, 2299.
17. Neuburger, M.;Polidori, A.;Faure, M.;Pietre, E.;Bour-
It is noteworthy that the measured antiradical efficiency
using this hemolysis test reflected the overall antioxidant
behavior of the tested compounds including exogenous
radical scavenger activity but also metal ion chelator
properties, protective actions on the intrinsic anti-
oxidant defense system and regenerative effects on anti-
oxidant molecules involved in the regulation of the
intra- and extra-cellular redox status. Thus, numerous
chemical mechanisms at cell cytoplasmic, cell mem-
branes and/or extra-cellular levels may be involved in
the antagonism that occurred between LAMPBN and
LGT or lipoate. Therefore, further studies are needed to
thoroughly investigate specific chemical mechanisms
underlying antagonistic antioxidant effects between the
water-soluble derivatives of PBN and lipoate that are
profoundly reduced by their chemical association in
PBNLP.
J.
guignon, J.;Douce, R.;Pucci, B. Eur. J. Biochem. 2000, 267,
2882.
18. PBNLP analysis: mp 105 ꢁC (dec). 1H NMR (250 MHz,
DMSO-d6): d 8.29 (2H, d, J=8.2 Hz.), 8.26 (1H, m), 7.77 (1H,
s), 7.73 (1H, m), 7.32 (2H, d, J=8.2 Hz), 7.15 (1H, m), 4.50–
4.00 (7H, m), 3.85–3.25 (11H, m), 3.25–2.85 (6H, m), 2.41 (1H,
m), 2.04 (2H, t, J=6.9 Hz), 1.86 (1H, m), 1.75–1.20 (14H, m).
13C NMR (62.86 MHz, DMSO-d6): d 173.1, 172.4 (CO-NH),
156.3 (O-CO-NH), 142.0 (CIV arom.), 130.7 (CH¼N(O)),
130.2 (CIV arom.), 128.9, 127.2 (CH arom.), 105.1 (CH-10),
83.4 (CH-Lac.), 76.2 (CH-Lac.), 73.7 (CH-Lac.), 72.6 (CH-
Lac.), 72.5 (CIV), 71.9 (CH-Lac.), 71.6 (CH-Lac.), 71.1 (CH-
Lac.), 68.7 (CH-Lac.), 68.1 (CH2-O-CO-NH), 62.8, 61.1 (CH2-
OH), 56.6 (CH-S), 42.2 (CH2-NH-Lac.), 40.2 (CHS-C (CH2-S
and CH2-NH), 36.5 (CH2-NH), 35.7 (CH2-CO), 34.6 (CH2-
CH-S), 29.9, 28.8, 25.5 (CH2 lipoate and CH2 GABA), 23.6
(CH3). UV (MeOH, nm): lmax=297.4. FABMS (m-nitrobenzyl
alcohol matrix): m/z=851[M+H]+;446 [C 19H28NO11]+;289
[C12H21N2O2S2]+. Elemental analysis C36H58N4O15S2, 1H2O
(869): calcd C, 49.76;H, 6.96;N, 6.45;S, 7.38;Found C,
49.39;H, 6.97;N, 6.31;S, 7.06.
All together, these findings pointed out that the chemi-
cal association of water-soluble derivatives of PBN and
lipoic acid has a strong beneficial effect on blood resis-
tance to free radical attack as compared to these deri-
vatives in admixtures and to PBN and lipoic acid alone.
Moreover, it suggested that the PBNLP beneficial effect
is partly governed by the amphiphilic character of the
molecule that probably increased its bioavailability and
by the reduction of negative chemical interactions
between the two PBNLP constituents LAMPBN and
LGT. These preliminary encouraging results on the in
vitro protection of blood against oxidative stress
emphasized the benefit of the synthesis of new amphi-
philic antioxidant molecules such as PBNLP to improve
their biological effects. In vivo studies are now needed
to further confirm the beneficial effect of PBNLP and to
investigate the therapeutic benefit of modified anti-
oxidant molecules as compared to unmodified mole-
cules. The use of the free radical-mediated hemolysis
test could also be helpful for this purpose.
19. Prost, M. U.S. Patent 5, 135, 850, 1992.
20. Kumagai, J.;Kawaura, T.;Miyazaki, T.;Prost, M.;Prost,
E.;Watanabe, M.;Quetin-Leclerc, J.
2002, 66, 17.
Radiat. Phys. Chem.