14
Phases were separated and the organic layer was washed with
water, dried and evaporated to dryness. The white solid obtained
References and notes
ACCEPTED MANUSCRIPT
1. a) Greb, J. E.; Goldminz, A. M.; Elder, J. T.; Lebwohl, M. G.;
was dissolved in DCM (6.0 mL) and N,N-diisopropylethylamine
(0.53 mL, 3.05 mol, 3.00 eq.) was added followed by 4-ethyl-N-
isobutylaniline hydrochloride (240 mg, 1.12 mol, 1.10 eq.). The
reaction mixture was stirred at 23 °C for 18 h. HPLC analysis
after 18 h (pyrrolidine quench) revealed complete conversion.
The reaction mixture was diluted with 1N HCl and phases were
separated. The organic layer was washed with sat. aqueous
NaHCO3, brine, dried and evaporated to dryness. The orange
solid was purified was purified by flash chromatography on SiO2
eluting with DCM-EtOAc (0-50%) to afford the title compound
(220 mg, 40% yield) as a white solid: UPLC-MS (tR=1.69 min),
Gladman, D. D.; Wu, J. J.; Mehta, N. N.; Finlay, A. Y.; Gottlieb,
A. B. Nat. Rev. Disease Primers 2016, 2, 1-17.
2. a) Kojetin, D. J.; Burris T. Nat. Rev. Drug Discov. 2014,13,197–
216; b) Banerjee, D.; Zhao, L.; Wu, L.; Palanichamy, A.; Ergun,
A.; Peng, L.; Quigley, S.; Hamann, S.; Dunstan, R.; Cullen, P.;
Allaire; N.; Guertin, K.; Wang, T.; Chao, J.; Loh, C.; Fontenot,
J. D. Immunology 2016, 147, 399–413; c) Cyr, P.; Bronner, S. M.;
Crawford, J.J. Bioorg. Med. Chem. Lett. 2016, 26, 4387–4393 and
references cited therein.
newsArticle&ID=2149044
4. Ouvry, G.; Atrux-Tallau, N.; Bihl, F.; Bondu, A.; Bouix-Peter, C.;
Carlavan, I.; Christin, O.; Cuadrado, M.-J.; Defoin-Platel, C.;
Deret, S.; Duvert, D.; Feret, C.; Forissier, M.; Fournier, J.-F.;
Froude, D.; Hacini-Rachinel, F.; Harris, C. S.; Hervouet, C.;
Huguet, H.; Lafitte, G.; Luzy, A.-P.; Musicki, B.; Orfila, D.;
Ozello, B.; Pascau, C.; Pascau, J.; Parnet, V.; Peluchon, G.; Pierre,
R.; Piwnica, D.; Raffin, C.; Rossio, P.; Spiesse, D.; Taquet, N.;
Thoreau, E.; Vatinel, R.; Vial, E.; Hennequin, L. F.
ChemMedChem 2018, 13, 321-337.
5. Ouvry, G.; Bihl, F. ; Bouix-Peter, C. ; Christin, O. ; Defoin-Platel,
C. ; Deret, S. ; Feret, C. ; Froude, D. ; Hacini-Rachinel, F. ; Harris,
C. S. ; Hervouet, C. ; Lafitte, G. ; Luzy, A-P. ; Musicki, B. ;
Orfila, D. ; Parnet, V. ; Pascau, C.; Pascau, J.; Pierre, R. ; Raffin,
C. ; Rossio, P. ; Spiesse, D. ; Taquet, N. ; Thoreau, E.; Vatinel, R.;
Vial, E.; Hennequin, L. F. Bioorg. Med. Chem. Lett. 2018, 28,
1269-1273.
6. a) Lücking, U. Angew. Chem. Int. Ed Engl. 2013, 52, 9399-9340;
b) Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Eur. J. Med.
Chem. 2017 126, 225-245; c) Sirvent, J.A; Lücking, U.
ChemMedChem 2017, 12, 487-501; Zenzola, M.; Doran, R.;
Degennaro, L.; Luisi R.; Bull, J.A. Ang. Chem. Int. Ed Engl. 2016,
55,7203-7207.
7. Raza, A.; Sham, Y. Y.; Vince, R. Bioorg. Med. Chem. Lett. 2008,
18, 5406-5410.
8. a) Birault, V.; Campbell, A. J.; Harrison, S. A.; Le, J.; Shukla, L.
WO2013/160418, 31 Oct, 2013; b) Birault, V.; Campbell, A. J.;
Harrison, S.; Le, J. WO2015/061515, 30 Apr, 2015. GSK’s lead
compound is suspected to be GSK2981278.
1
ESI m/z 534.3 (M+H)+; H NMR (400 MHz, DMSO-d6) δ 8.03
(dd, J=8.8, 2.4 Hz, 1H), 7.74 (d, J=2.3 Hz, 1H), 7.64 (d, J=9.0
Hz, 1H), 7.22 (d, J=8.3 Hz, 2H), 6.96 (d, J=8.3 Hz, 2H), 4.32 –
4.12 (m, 2H), 3.91 (ddd, J=11.3, 4.5, 1.9 Hz, 2H), 3.72 (s, 3H),
3.41 – 3.36 (m, 2H), 3.42 – 3.17 (m, 2H), 2.61 (q, J=7.6 Hz, 2H),
2.22 – 2.08 (m, 1H), 1.84 – 1.63 (m, 2H), 1.51 – 1.33 (m, 3H),
1.18 (t, J=7.6 Hz, 3H), 0.87 (d, J=6.6 Hz, 3H), 0.84 (d, J=6.6 Hz,
3H); 13C NMR (101 MHz, DMSO) δ 159.2, 143.9, 136.3, 136.2,
129.7, 129.6, 128.7, 128.3, 123.0, 115.4, 111.7, 74.8, 66.6, 57.4,
41.5, 34.2, 29.1, 28.8, 27.8, 26.4, 19.7, 19.6, 15.4.
4.7.5. N-(4-Ethylphenyl)-N-isobutyl-3-(S-methylsulfonimidoyl)-4-
((tetrahydro-2H-pyran-4-yl)methoxy)benzene-sulfonamide (1)
To 34 (200 mg, 0.37 mmol, 1.00 eq.) in DCM (3 ml) was added
trifluoroacetic anhydride (83.0 mg, 0.39 mmol, 1.05 eq.) and the
solution was stirred at 23 °C for 2 h. HPLC analysis after 2 h
revealed
complete
conversion
to
the
intermediate
trifluoroacetamide. The reaction mixture was quenched with
water (0.50 mL) and evaporated to dryness. The residue was
dissolved in MeOH (3 mL) and K2CO3 (100 mg, 0.74 mmol, 2.00
eq.) was added. The suspension was stirred at 23 °C for 1 h.
LC/MS analysis after 1 h revealed complete conversion. The
reaction mixture was diluted with water (5.0 mL) and a white
solid precipitated. The solid was collected by filtration to afford
the title compound (173 mg, 92% yield) as a white solid: UPLC-
9. Chakraborti, A. K.; Nayak, M. K.; Sharma, L. J. Org. Chem.
2002, 67, 1776–1780.
10. Mispelaere-Canivet, C.; Spindler, J-F.; Perrio, S.; Beslin, P.
Tetrahedron 2005, 61, 5253-5259.
1
MS (tR=1.61 min, purity=97.2%), ESI m/z 509.2 (M+H)+; H
11. Okamura, H.; Bolm, C. Org. Lett., 2004, 6, 1305–1307.
12. Porte, A. M.; Caggiano, T. J.; Diamantidis, G.; Hauze, D. B.;
Harrison, B. L.; Hoke, M.; Kreft, A.; Kubrak, D. M.; Mann, C.
W.; Mayer, S.; Morris, K. M. U.S. Pat. Appl. Publ., 20070249722,
13. Park, K. K.; Lee, J. H. Bull. Kor. Chem. Soc. 2008, 29, 2502-2504.
14. Ramadas, K.; Srinivasan, N. Synth. Commun. 1992, 22, 3189-
3195.
15. Deprez, P.; Jary, H.; Temal, T. PCT Int. Appl., 2007060026.
16. Choong, I. C.; Lew, W.; Lee, D.; Pham, P.; Burdett, M. T.; Lam,
J. W.; Wiesmann, C.; Luong, T. N.; Fahr, B.; DeLano, W. L.;
McDowell, R. S.; Allen, D. A.; Erlanson, D. A.; Gordon, E. M.;
O'Brien, T. J. Med. Chem. 2002, 45, 5005-5022.
17. Gries, J.; Krueger, J. Synlett 2014, 25, 1831-1834.
18. Bellale, E. V.; Chaudhari, M. K.; Akamanchi, K. G. Synthesis
2009, 19, 3211-3213.
19. a) Dixon, D. D.; Grina, J.; Josey, J. A.; Rizzi, J. P.; Schlachter, S.
T.; Wallace, E. M.; Wang, B.; Wehn, P.; Xu, R.; Yang, H. PCT
Int. Appl., 2015035223; b) Luecking, U.; Siemeister, G.; Bader, B.
PCT Int. Appl., 2007079982.
NMR (400 MHz, DMSO-d6) δ 8.00 (d, J=2.5 Hz, 1H), 7.67 (dd,
J=8.8, 2.5 Hz, 1H), 7.39 (d, J=8.8 Hz, 1H), 7.20 (d, J=8.0 Hz,
2H), 7.00 (d, J=8.0 Hz, 2H), 4.58 (br, 1H), 4.10 (dt, J=11.8, 5.8
Hz, 2H), 3.90 (dd, J=11.0, 4.1 Hz, 2H), 3.44 – 3.21 (m, 4H), 3.20
(s, 3H), 2.61 (q, J=7.6 Hz, 2H), 2.17 – 2.03 (m, 1H), 1.73 (d,
J=9.9 Hz, 2H), 1.41 (q, J=11.0, 9.7 Hz, 3H), 1.18 (t, J=7.6 Hz,
3H), 0.85 (dd, J=6.6, 4.4 Hz, 6H); 13C NMR (101 MHz, DMSO-
d6) δ 159.0, 143.5, 136.4, 133.6, 132.1, 129.2, 128.5, 128.5,
128.3, 114.1, 73.8, 66.7, 57.2, 43.7, 34.4, 29.1, 29.1, 27.7, 26.4,
19.6, 15.3.
Acknowledgments
The authors would like to acknowledge the support of our
CRO partners, in particular, Santai Labs for supplying building
block 9 on large-scale. Grégoire Mouis and Ghizlane El-Bazbouz
are gratefully acknowledged for their help with the purification of
a selection of these compounds. Prof. Gérard Coquerel is
acknowledged for the absolute configuration elucidation of
compound 25.
20. a) Heinrich, T.; Zenke, F.; Rohdich, F.; Friese-Hamim, M.; Hahn,
D. PCT Int. Appl., 2016020031; b) Schulze, V.; Kosemund, D.;
Wengner, A. M.; Siemeister, G.; Stoeckigt, D.; Lienau, P.;
Schirok, H.; Briem, H. PCT Int. Appl., 2012143329.
21. See the supporting information for the synthesis of
25.camphorsulfonate
Supporting information
22. a) Mancheño, O. G.; Bolm, C. Org. Lett. 2007, 9, 2951-2954; b)
Mancheño, O. G.; Bistri, O.; Bolm, C. Org. Lett. 2007, 9, 3809-
3811.
23. Addition of a small amount of water to DCM ensure a
reproducible hydrolysis time on scale
The structural elucidation of compound 25 (1R)-(−)-10-
camphorsulfonic acid salt as well as LCMS chromatograms and
NMR spectra for a majority of compounds described in this paper
are included at no extra charge.
24. Double chlorosulfonylation was achieved at 150°C with a highly
exothermic quench limiting its throughput on larger scale