White-Morris et al.
luminescence has been tied to the presence of close Au‚‚‚Au
contacts within the solids. Attractive aurophilic interactions
(aurophilic bonding) between closed shell gold(I) centers are
generally acknowledged to exist in solids whenever adjacent
Au‚‚‚Au contacts are less than ca. 3.6 Å.7,8 Such interactions
represent a significant factor in determining the solid-state
organization of many gold(I) complexes.9,10 Correlation
effects strengthened by relativistic effects, as suggested by
Pyykko¨,11,12 and/or hybridization of the 6s and 6p orbitals
with the 5d orbitals, as suggested by Hoffmann,13 are
responsible for the aurophilic bonding. Experimental studies
that examined the rotational barriers in binuclear Au(I)
complexes have shown that the strength of the attractive
aurophilic interaction is comparable to hydrogen bonding,
ca. 7-11 kcal/mol.14,15
Aggregation via aurophilic bonding can have a profound
influence on the emission of gold(I) complexes. For example,
Patterson and co-workers have shown that the simple
[Au(CN)2]- and [Ag(CN)2]- ions aggregate under a range
of conditions and that the aggregated forms show remarkable
variations in their luminescence.16-18 Thus, samples of KCl
doped with varying amounts of K[Au(CN)2] show multiple
emissions whose relative intensities depend on the dopant
level, temperature, and excitation wavelength.19 Similarly,
the luminescence from solutions of K[Au(CN)2] can be
“tuned” to occur from 275 to 470 nm depending upon the
concentration and solvent.20 Related studies have shown that
the colorless gold carbene cation [Au{C(NHMe)2}2]+ ag-
gregates in different fashions in salts with different anions
(e.g., (PF6)-, (BF4)-, Cl-, Br-) and that each salt shows its
own unique luminescence.21,22
The neutral isonitrile compounds, (RNC)AuIX, present a
diverse array of supramolecular structures. Variation of the
R group produces aggregates that include dimers, one-
dimensional extended-chain polymers, and two-dimensional
polymeric sheets.23-31 Despite the simplicity in their molec-
ular structure, spectroscopic investigations of the (RNC)-
AuIX family of compounds are very limited.23,29 However,
a photophysical/photochemical study of the closely related
(OC)AuICl showed that it is luminescent with emission at
663 nm from the solid, while the absorption in solution
occurs at ca. 250 nm.32
A meaningful comparison of intermolecular d10-d10
interactions is facilitated through examination of structurally
and compositionally similar complexes that crystallize in an
isostructural fashion.33 Thus, by studying isostructural Au(I)
and Ag(I) compounds, Schmidbaur and co-workers demon-
strated that gold is smaller than silver, contrary to what was
believed prior to these studies.34 In another recent compara-
tive study of three complexes that crystallize in the same
space group, Fackler and co-workers have shown that the
intramolecular Ag-Au bonding in a binuclear organosulfur
complex was stronger than the Au-Au and Ag-Ag bonding
in the corresponding homonuclear complexes.35
Here, we report the structural and spectral characterization
of three newly prepared isonitrile complexes (CyNC)AuICl,
(CyNC)AuIBr, and (CyNC)AuII in order to examine the
effects of the different halide ligands on the self-association
and the luminescence. A complementary study of a series
of complexes of the type (RNC)AuICN in which the R group
is varied while keeping X ) CN has been reported
elsewhere.36
Results
(7) Schmidbaur, H. Gold: Progress in Chemistry, Biochemistry and
Technology; Wiley: New York, 1999.
Colorless crystals of (CyNC)AuICl and (CyNC)AuIBr were
obtained by treating aqueous solutions of HAuCl4‚H2O or
HAuBr4‚H2O with cyclohexyl isonitrile, which acts both as
(8) Grohmann, A.; Schmidbaur, H. In ComprehensiVe Organometallic
Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.;
Elsevier: Oxford, 1995; Vol. 3, p 1.
(9) Jones, P. G. Gold Bull. 1986, 19, 46; 1983, 16, 114; 1981, 14, 159;
1981, 14, 102.
(10) Pathaneni, S. S.; Desiraju, G. R. J. Chem. Soc., Dalton Trans. 1993,
319.
(11) (a) Pyykko¨, P.; Li, J.; Runeberg, N. Chem. Phys. Lett. 1994, 218, 133.
(b) Pyykko¨, P.; Mendizabal, F. Chem.-Eur. J. 1997, 3, 1458. (c)
Pyykko¨, P.; Runeberg, N.; Mendizabal F. Chem.-Eur. J. 1997, 3,
1451.
(12) For a review see: Pyykko¨, P. Chem. ReV. 1997, 97, 597.
(13) (a) Merz, K. M., Jr.; Hoffmann, R. Inorg. Chem. 1988, 27, 2120. (b)
Jiang, Y.; Alvarez, S.; Hoffmann, R. Inorg. Chem. 1985, 24, 749. (c)
Mehrotra, P. K.; Hoffmann, R. Inorg. Chem. 1978, 17, 2187. (d)
Dedieu, A.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 2074.
(14) Schmidbaur, H.; Graf, W.; Mu¨ller, G. Angew. Chem., Int. Ed. 1988,
27, 417.
(15) Harwell, D. E.; Mortimer, M. D.; Knobler, C. B.; Anet, F. A. L.;
Hawthorne, M. F. J. Am. Chem. Soc. 1996, 118, 2679.
(16) Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H. J. Am.
Chem. Soc. 2000, 122, 10371.
(23) Ecken, H.; Olmstead, M. M.; Noll, B. C.; Attar, S.; Schlyer, B.; Balch,
A. L. J. Chem. Soc., Dalton Trans. 1998, 3715.
(24) Schneider, W.; Angermaier, K.; Sladek, A.; Schmidbaur, H. Z.
Naturforsch. B 1996, 51, 790.
(25) Bonati, F.; Minghetti, G. Gazz. Chim. Ital. 1973, 103, 373.
(26) Eggleston, D. S.; Chodosh, D. F.; Webb, R. L.; Davis, L. L. Acta
Crystallogr. 1986, C42, 36.
(27) Lentz, D.; Willemsen, S. J. Organomet. Chem. 2000, 612, 96.
(28) Mathieson, T. J.; Langdon, A. G.; Milestone, N. B.; Nicholson, B. K.
J. Chem. Soc., Dalton Trans. 1999, 201.
(29) Perreault, D.; Drouin, M.; Michel, A.; Harvey, P. D. Inorg. Chem.
1991, 30, 2.
(30) Liau, R.-Y.; Mathieson, T.; Schier, A.; Berger, R. J.; Runeberg, N.;
Schmidbaur, H. Z. Naturforsch. 2002, 57b, 881.
(31) Jia, G.; Puddephatt, R. J.; Vittal, J. J.; Payne, N. C. Organometallics
1993, 12, 263. (b) Jia, G.; Payne, N. C.; Vittal, J. J.; Puddephatt, R.
J. Organometallics 1993, 12, 4771.
(17) Rawashdeh-Omary, M. A.; Omary, M. A.; Shankle, G. E.; Patterson,
H. H. J. Phys. Chem. B 2000, 104, 6143.
(18) Omary, M. A.; Patterson, H. H. J. Am. Chem. Soc. 1998, 120, 7696.
(19) Hettiarachchi, A. R.; Rawashdeh-Omary, M. A.; Kanan, S. M.; Omary,
M. A.; Patterson, H. H.; Tripp, C. P. J. Phys. Chem. B 2002, 106,
10058.
(20) Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler,
J. P., Jr. J. Am. Chem. Soc. 2001, 123, 11237.
(21) White-Morris, R. L.; Olmstead, M. M.; Jiang, F.; Tinti, D. S.; Balch,
A. L. J. Am. Chem. Soc. 2002, 124, 2327.
(32) Vogler, A.; Kunkely, H. J. Organomet. Chem. 1997, 541, 177.
(33) We use the term “isostructural” for crystals of different compounds
that exist with the same space group, with similar cell dimensions,
and similar, but not necessarily identical, molecular geometries and
supramolecular organizations.
(34) (a) Tripathi, U. M.; Bauer, A.; Schmidbaur, H. J. Chem. Soc., Dalton
Trans. 1997, 2865. (b) Bayler, A.; Schier, A.; Bowmaker, G. A.;
Schmidbaur, H. J. Am. Chem. Soc. 1996, 118, 7006.
(35) Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr. Inorg.
Chim. Acta 2002, 334, 376.
(22) White-Morris, R. L.; Olmstead, M. M.; Jiang, F.; Balch, A. L. Inorg.
Chem. 2002, 41, 2313.
(36) White-Morris, R. L.; Stender, M.; Tinti, D. S.; Balch, A. L.; Rios, D.;
Attar, S. Inorg. Chem. 2003, 42, 3237.
6742 Inorganic Chemistry, Vol. 42, No. 21, 2003